Advanced search
Start date
Betweenand

The microbiome of Amazonian dark earth: structure and function of the microbial communities from rhizosphere and biochar associated to the biogeochemical cycles

Grant number: 11/50914-3
Support type:BIOTA-FAPESP Program - Regular Research Grants
Duration: January 01, 2012 - December 31, 2013
Field of knowledge:Agronomical Sciences - Agronomy
Principal Investigator:Tsai Siu Mui
Grantee:Tsai Siu Mui
Home Institution: Centro de Energia Nuclear na Agricultura (CENA). Universidade de São Paulo (USP). Piracicaba , SP, Brazil

Abstract

In many tropical forests, turnover of organic material occurs rapidly and near to the soil surface, leading to a rapid loss of soil organic matter when forests are burned and land is used for agriculture. The organic matter fluxes in soil are a dynamic interaction of chemical and physical factors that affect biological processes. The anthropogenic addition of organic amendments including plant and animal material, pottery, and charcoal, into extant soil formed what are known as Terra Preta do Índio or Anthropogenic Dark Earth (ADE), which are prized by farmers for their sustained fertility, in regions where chronic soil infertility has lead, in part, to on-going destruction of primary forest to create marginal cropland. In ADE, the higher fertility at greater soil depth appears to be stabilized by the presence of black carbon (BC) and leads to large and diverse microbial populations. Understanding the biogeochemical processes involved in maintaining of fertility of ADE soils may lead to new technologies for soil management in the tropics, and provide a novel strategy for mitigating atmospheric CO2 by sequestering BC in soils, which may also serve as a nucleus for improved soil fertility. In addition, the understanding the functional diversity associated with organic matter degradation in ADE, and soil in general, may pose as much of a challenge to understanding soil microbial processes as trying to describe the actual taxonomic diversity. Measuring the microbial communities associated and their roles and contribution to biogeochemical processes of C and N cycles associated to the soil black carbon and also to the rhizosphere will illuminate how ADE has retained stable fertility for hundreds to thousands of years. The effect of rhizosphere will be considered in order to identify which microorganisms are carrying out a specific set of metabolic processes in the environment, until recently the usual way was to cultivate microbial strains in the laboratory, using growth media that contained a specific substrate, and then to identify the cultivated bacteria at the physiological, biochemical and, more recently, molecular levels. Or of our main goals will be attached to investigate and promote studies on cultivation of C-aromatic biodegraders, under aerobic and anaerobic growth, conditions. (AU)

Articles published in Revista Pesquisa FAPESP about the project
Microbial alliances 
Microbial alliances 

Scientific publications (5)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
LEMOS, LEANDRO NASCIMENTO; DE SOUZA, ROSINEIDE CARDOSO; CANNAVAN, FABIANA DE SOUZA; PATRICIO, ANDRE; PYLRO, VICTOR SATLER; HANADA, ROGERIO EIJI; MUI, TSAI SIU. Metagenome sequencing of the microbial community of two Brazilian anthropogenic Amazon dark earth sites, Brazil. GENOMICS DATA, v. 10, p. 167-168, DEC 2016. Web of Science Citations: 0.
LUCHETA, ADRIANO REIS; CANNAVAN, FABIANA DE SOUZA; WURDIG ROESCH, LUIZ FERNANDO; TSAI, SIU MUI; KURAMAE, EIKO EURYA. Fungal Community Assembly in the Amazonian Dark Earth. MICROBIAL ECOLOGY, v. 71, n. 4, p. 962-973, MAY 2016. Web of Science Citations: 8.
SCHULZ, KRISTIN; HUNGER, SINDY; BROWN, GEORGE G.; TSAI, SIU M.; CERRI, CARLOS C.; CONRAD, RALF; DRAKE, HAROLD L. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil. ISME Journal, v. 9, n. 8, p. 1778-1792, AUG 2015. Web of Science Citations: 14.
LIMA, AMANDA BARBOSA; CANNAVAN, FABIANA SOUZA; NAVARRETE, ACACIO APARECIDO; TEIXEIRA, WENCESLAU GERALDES; KURAMAE, EIKO EURYA; TSAI, SIU MUI. Amazonian Dark Earth and Plant Species from the Amazon Region Contribute to Shape Rhizosphere Bacterial Communities. MICROBIAL ECOLOGY, v. 69, n. 4, SI, p. 855-866, MAY 2015. Web of Science Citations: 22.
DE LIMA BROSSI, MARIA JULIA; MENDES, LUCAS WILLIAM; GERMANO, MARIANA GOMES; LIMA, AMANDA BARBOSA; TSAI, SIU MUI. Assessment of Bacterial bph Gene in Amazonian Dark Earth and Their Adjacent Soils. PLoS One, v. 9, n. 6 JUN 13 2014. Web of Science Citations: 1.

Please report errors in scientific publications list by writing to: cdi@fapesp.br.
Distribution map of accesses to this page
Click here to view the access summary to this page.