Advanced search
Start date
Betweenand

The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): structure, comparative analysis and evolutionary landmarks

Grant number: 17/12518-5
Support type:Regular Research Grants - Publications - Scientific article
Duration: August 01, 2017 - January 31, 2018
Field of knowledge:Biological Sciences - Genetics - Plant Genetics
Principal Investigator:Alessandro de Mello Varani
Grantee:Alessandro de Mello Varani
Home Institution: Faculdade de Ciências Agrárias e Veterinárias (FCAV). Universidade Estadual Paulista (UNESP). Campus de Jaboticabal. Jaboticabal , SP, Brazil

Abstract

The carnivorous plants of the family Lentibulariaceae have attained recent attention not only because of their interesting lifestyle, but also because of their dynamic nuclear genome size. Lentibulariaceae genomes span an order of magnitude and include species with the smallest genomes in angiosperms, making them a powerful system to study the mechanisms of genome expansion and contraction. However, little is known about mitochondrial DNA (mtDNA) sequences of this family, and the evolutionary forces that shape this organellar genome. Here we report the sequencing and assembly of the first complete Lentibulariaceae mtDNA from the endemic terrestrial Brazilian species Utricularia reniformis. The 857,234bp master circle mitochondrial genome encodes 70 transcriptionaly active genes (42 protein-coding, 25 tRNAs and 3 rRNAs), covering up to 7% of the mtDNA. A ltrA-like protein related to splicing and mobility and a LAGLIDADG homing endonuclease have been identified in intronic regions, suggesting particular mechanisms of genome maintenance. RNA-seq analysis identified properties with putative diverse and important roles in genome regulation and evolution: 1) 672kbp (78%) of the mtDNA is covered by full-length reads; 2) most of the 243kbp intergenic regions exhibit transcripts; and 3) at least 69 novel RNA editing sites in the protein-coding genes. Additional genomic features are hypothetical ORFs (48%), chloroplast insertions, including truncated plastid genes that have been lost from the chloroplast DNA (5%), repeats (5%), relics of transposable elements mostly related to LTR retrotransposons (5%), and truncated mitovirus sequences (0.4%). Phylogenetic analysis based on 32 different Lamiales mitochondrial genomes corroborate that Lentibulariaceae is a monophyletic group. In summary, the U. reniformis mtDNA represents the eighth largest plant mtDNA described to date, shedding light on the genomic trends and evolutionary characteristics and phylogenetic history of the family Lentibulariaceae. (AU)