Advanced search
Start date
Betweenand

Comparison of fermentative profiles of ethanol fermenting yeasts genetically modified on an industrial and laboratory scale through networks co-expression

Grant number: 20/06563-0
Support type:Scholarships in Brazil - Scientific Initiation
Effective date (Start): August 01, 2020
Effective date (End): July 31, 2021
Field of knowledge:Biological Sciences - Genetics - Molecular Genetics and Genetics of Microorganisms
Principal Investigator:Gonçalo Amarante Guimarães Pereira
Grantee:Milena Antunes Piccart Gutierrez
Home Institution: Instituto de Biologia (IB). Universidade Estadual de Campinas (UNICAMP). Campinas , SP, Brazil

Abstract

Since fossil fuel remains largely responsible for the high levels of CO2 in the atmosphere, the development of renewable fuels is of great importance. Currently, bioethanol in its second generation production (ethanol 2G), is the most successful alternative and may become the most economically viable. This is due to the use of straw and sugar cane bagasse, materials lignocellulosic, as raw material for ethanol production. However, some bottlenecks still need to be addressed. The development of a strain of S. cerevisiae that is resistant to the hostile environment of industry and is also capable of metabolize the five-carbon sugars present in the lignocellulosic material, would significantly increase production yield. In this context, previous studies inserted the xylose isomerase (XI) pathway, capable of metabolizing xylose, in the known as Pedra-2 (PE-2), but there are still some bottlenecks that minimize production, mainly on an industrial scale. With the use of bioinformatics and Transcriptomic RNA-Seq data previously generated from fermentations of this strain, this work aims to carry out analysis of transcriptomics, generate networks of co-expression and integrate these data in a context of systems biology for greater knowledge about the metabolism of this yeast. In this way, bottlenecks will be identified on a laboratory and industrial scale, possible solutions that can maximize the yield of second generation ethanol production, and responses to differences between fermentation scales (industrial and laboratory).