Advanced search
Start date

Impact of cellular prion protein in temozolomide resistance of glioblastoma stem cells mediated by HIF1±.

Grant number: 23/04293-4
Support Opportunities:Scholarships in Brazil - Post-Doctoral
Effective date (Start): May 01, 2023
Effective date (End): April 30, 2024
Field of knowledge:Biological Sciences - Morphology - Cytology and Cell Biology
Principal Investigator:Marilene Hohmuth Lopes
Grantee:Lucas Felipe Fernandes Bittencourt
Host Institution: Instituto de Ciências Biomédicas (ICB). Universidade de São Paulo (USP). São Paulo , SP, Brazil
Associated research grant:18/15557-4 - Prion protein and its partners: emerging targets for glioblastoma stem cell based-therapy, AP.JP2


Glioblastoma multiforme (GBM), the most aggressive type of brain tumor, is initiated and maintained by a subpopulation of tumorigenic cells called glioblastoma stem cells (GSCs) that contribute to progression and resistance to therapy. In GBM therapy the alkylating agent temozolomide (TMZ) is the most effective chemotherapist, but resistance is frequent. One of the mechanisms of resistance to TMZ involves the modulation of MGMT expression by Hypoxia Induced Factor 1± (HIF1±) in GSCs, a molecule highly expressed in GSCs niches which promotes cell survival through the induction of anti-apoptotic proteins expression. Recent data from our group demonstrate that blocking the interaction between the cellular prion protein (PrPC) and one of its main ligands, the heat shock organizing protein (HOP) with a HOP peptide (HOP230-245) is able to inhibit GSCs self-renewal and glioblastomas growth in vivo. PrPC silencing decreases the expression of stem cells markers, self- renewal and tumorigenesis of GSCs. Remarkably, a PrPC peptide which mimics HOP binding site (PrPC106-126) is able to promote HIF1± expression, inducing protection against cell death. Considering these data together, this study aims to identify the participation of PrPC in the TMZ resistance of GSCs mediated by HIF1±. In addition, we will evaluate HOP230-245 peptide potential in sensitizing GSCs to TMZ, since it binds to PrPC at the specific site 106-126 being able to compete with other PrPC ligands by this domain and, consequently, inhibit functions modulated by these interactions. Preliminary trials on stem cell enriched glioblastoma lineage cultures suggest that treatment with TMZ-associated HOP230-245 increases cell death compared to TMZ or the peptide alone, sensitizing cells to TMZ treatment and increasing their efficiency. Finally, the search for therapeutic-combined strategies targeting GSCs is imperative to improve the efficacy of treatments against this incurable tumor.

News published in Agência FAPESP Newsletter about the scholarship:
Articles published in other media outlets (0 total):
More itemsLess items

Please report errors in scientific publications list using this form.