Advanced search
Start date
Betweenand


Effects of ocean acidification on biogeochemical processes in marine sediments: In situ and laboratory experiments

Full text
Author(s):
Betina Galerani Rodrigues Alves
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto Oceanográfico (IO/DIDC)
Defense date:
Examining board members:
Paulo Yukio Gomes Sumida; Eunice da Costa Machado; Elisabete de Santis Braga da Graca Saraiva; Marcelo Friederichs Landim de Souza
Advisor: Paulo Yukio Gomes Sumida
Abstract

Ocean acidification, a result of an increase in carbon dioxide (CO2) anthropic emissions, has caused a change in the chemical balance of the carbonate system and a consequent pH decrease in the world\'s oceans. Approximately 30% of anthropogenic CO2 is absorbed by the ocean, which has already reduced the pH by ∼0.1 units in surface waters (with further reductions expected). The scale of \"tolerable\" pH changes is still uncertain for many organisms and little-known for biological processes, particulary for the sediment. This work aimed to quantify both the current rates of organic matter remineralization and nutrient fluxes at the sediment-water interface and the changes in those rates in response to different ocean acidification scenarios, using benthic incubation chambers both in situ and in the laboratory. The in situ studies and sample collections for laboratory experiments were performed via SCUBA in a shallow area near Ubatuba-SP (6-8 m deep). Incubation experiments showed high oxygen (O2) consumption, ranging from -17 mmol m-2 d-1 in July 2012 to -112 µmol m-2 d-1 in April and June 2013. They also exhibited a dominance of nitrification, with fluxes between 0.2 and 0,4 µmol m-2 d-1 (with no temporal variation). Incubations also exhibited a release of ammonium, with the highest fluxes (1.0 - 1.5 µmol m-2 d-1) in March, April and June 2013. In general, net heterothrophic processes prevailed over autotrophic processes for the study region. The interstitial water parameters (ammonium, phosphate, dissolved iron and total sulfides) exhibited no significant difference between the two kinds of sediment analyzed, silt (station 1) and sand (station 2). These results suggested that the processes occurring in the coastal sediments of Ubatuba are: (1) benthic remineralization mediated by bacterial biota, (2) nitrification prevailed over denitrification and (3) probably excretion by benthic organisms. The experiment in situ indicated an increase in the fluxes of O2 (from -70 to -108 µmol m-2 d-1) and CO2 (from 0.02 to 45 µmol m-2 d-1). The acidification experiments showed a similar effect: a higher O2 average consumption and CO2 release, mostly in the sandy sediment. A decrease in nitrification processes occurred in response to decreased pH. This work has provided a baseline for the biogeochemical processes in coastal sediments in Ubatuba (SP), as well as demonstrated the effects of ocean acidification on biogeochemical processes in coastal sediments. (AU)

FAPESP's process: 11/13912-2 - Effects of ocean acidification on benthic metabolism and biogeochemical fluxes on the sediment-water interface.
Grantee:Betina Galerani Rodrigues Alves
Support Opportunities: Scholarships in Brazil - Doctorate