Advanced search
Start date
Betweenand


Identification and characterization of actin binding proteíns (ABPs) from the apicomplexan Neospora caninum

Full text
Author(s):
Luciana Baroni
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Ciências Farmacêuticas de Ribeirão Preto (PCARP/BC)
Defense date:
Examining board members:
Ana Patricia Yatsuda Natsui; Munira Muhammad Abdel Baqui; Solange Maria Gennari
Advisor: Ana Patricia Yatsuda Natsui
Abstract

Neospora caninum is an obligate intracellular parasite that belongs to the phylum Apicomplexa. It is known as one of the main causes of infectious abortion in cows and for its efficient transplacentary transmission. Apicomplexan organisms use a phylum-specific mechanism of invasion and gliding motility, which use an unusual cellular machinery based on an actin myosin motor assisted by intermediary and anchoring proteins that creates the traction force to impulse the parasite forward. Filamentous actin (F-actin) is essential to the appropriate functioning of this machinery, although apicomplexan unconventional actin forms small and unstable filaments in vitro and is found preponderantly as monomer (G-actin) in cells. Thus, the parasites need actin-binding proteins (ABPs) to strictly regulate actin dynamics and to form and maintain F-actin when it is necessary to the cell. Here, we aimed at identifying and characterising ABPs from N. caninum. Two ABPs were characterised: actin-depolymerising factor (NcADF) and cyclase-associated protein (NcCAP) from N. caninum. In addition, a serum against the actin region between amino acids 201 and 310 (anti-NcAct201-310) was raised. NcADF, which corresponds to identification NCLIV_012510 on ToxoDB, was molecular and biochemically characterised. Firstly, the tertiary structure of NcADF was generated by molecular modelling based on homology. Comparing to canonical ADF/cofilins, NcADF presented a conserved folding, albeit its smaller F-loop. The recombinant form of NcADF was expressed in E. coli BL21 using pET32a(+) and pET28a(+) plasmids and solubilized in denaturing and native buffers, respectively. Polyclonal antibodies were raised in mice against purified NcADF_pET32, which was able to detect both forms of recombinant NcADF as well as proteins in 1-D and 2-D western blot with expected molecular weight and isoelectric point (pI). Additionally, NcADF was localised in extracellular N. caninum tachyzoites as a diffuse pattern on cytoplasm with less intensity in both poles. NcADF_pET28 was successfully purified in native form and used for functional characterisation to evaluate the role of recombinant NcADF on lyophilised rabbit actin dynamics. Together, co-sedimentation, polymerisation and depolymerisation kinetic, low shearing viscometry (falling ball), steady state, and G-actin and NcADF binding assays showed that NcADF was able to depolymerise actin-F, sequester actin monomers, and sever filaments. Moreover, NcCAP (identification NCLIV_054140) was also characterised. Recombinant NcCAP was expressed in pET32a(+) and pET28a(+) plasmids predominantly in inclusion bodies and was solubilised in denaturing buffer. NcCAP_pET32 was purified and identified by mass spectrometry. Then, the polyclonal antibodies against this recombinant protein was generated in mice. It was able to detect recombinant and endogenous NcCAP, presenting bands and spots in 1-D and 2-D western blot with molecular weight and pI quite near to the predicted ones. NcCAP was localised as a diffuse pattern on cytoplasm and/or predominantly on periplasmic regions of extracellular taclyzoites of N. caninum. Finally, the serum containing anti-NcAct201-310 polyclonal antibodies was raised in mice. It detected endogenous proteins mainly in native form and localised them on periplasmic and possibly nuclear region in extracellular N. caninum tachyzoites. The characterisation of N. caninum ABPs iv extends our understanding of these proteins conservation and their function throughout the Apicomplexa phylum. Furthrmore, it represents a contribution to the field towards the comprehention of actin dynamics and in the future might provide information for important mechanisms of dissemination and survival of the parasite at its host (AU)

FAPESP's process: 12/22772-2 - Identification and characterization of actin-binding proteins (ABPs) of the Apicomplexan parasite Neospora caninum
Grantee:Luciana Baroni
Support Opportunities: Scholarships in Brazil - Doctorate