Advanced search
Start date
Betweenand


Segmentação interativa de múltiplos objetos 3D em imagens médicas por cortes ótimos em grafo

Author(s):
Nikolas Moya
Total Authors: 1
Document type: Master's Dissertation
Institution: Universidade Estadual de Campinas. Instituto de Computação
Defense date:
Examining board members:
Bruno Motta de Carvalho; Neucimar Jerônimo Leite
Advisor: Alexandre Xavier Falcão
Abstract

Medical image segmentation is crucial to extract measures from 3D objects (body anatomical structures) that are useful for diagnosis and treatment of diseases. In such applications, interactive segmentation is necessary whenever automated methods fail or are not feasible. Graph-cut methods are considered the state of the art in interactive segmentation, but most approaches rely on the min-cut/max-flow algorithm, which is limited to binary segmentation while multi-object segmentation can considerably save user time and effort. This work revisits the differential image foresting transform (DIFT) ¿ a graph-cut approach suitable for multi-object segmentation in linear time ¿ and solves several problems related to it. Indeed, the DIFT algorithm can take time proportional to the number of voxels in the regions modified at each segmentation execution (sublinear time). Such a characteristic is highly desirable in 3D interactive segmentation to respond the user's actions as close as possible to real time. Segmentation using the DIFT works as follows: the user draws labeled markers (strokes of connected seed voxels) inside each object and background, while the computer interprets the image as a graph, whose nodes are the voxels and arcs are defined by neighboring voxels, and outputs an optimum-path forest (image partition) rooted at the seed nodes in the graph. In the forest, each object is represented by the optimum-path trees rooted at its internal seeds. Such trees are painted with same color associated to the label of the corresponding marker. By adding/removing markers, the user can correct segmentation until the forest (its object label map) represents the desired result. For the sake of consistency in segmentation, similar seed-based methods should always maintain the connectivity between voxels and seeds that have labeled them. However, this does not hold in some approaches, such as random walkers, or when the segmentation is filtered to smooth object boundaries. That connectivity is also paramount to make corrections without starting over the process at each user intervention. However, we observed that the DIFT algorithm fails in maintaining segmentation consistency in some cases. We have fixed this problem in the DIFT algorithm and when the obtained object boundaries are smoothed. These results are presented and evaluated on several 3D body anatomical structures from MR and CT images. (AU)

FAPESP's process: 13/17991-0 - A relaxed and efficient approach to interactive segmentation of multiple objects using graph cut.
Grantee:Nikolas Moya
Support type: Scholarships in Brazil - Master