Advanced search
Start date

\"Trinuclear ruthenium carboxylates with intercalating ligands: chemical and interaction studies with target biomolecules\"

Full text
Camila Fontes Neves da Silva
Total Authors: 1
Document type: Doctoral Thesis
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto
Defense date:
Examining board members:
Sofia Nikolaou; Mauricio da Silva Baptista; Pedro Paulo Corbi; Victor Marcelo Deflon; Gregoire Jean Francois Demets; Sergio Dovidauskas
Advisor: Sofia Nikolaou

In this work a class of trinuclear ruthenium carboxylates coordinated to ortho-metallated ligands was presented. The electronic, electrochemical and photophysical properties of these complexes were investigated, as well as anticancer activity and interactions with target biomolecules, DNA and HSA. Synthesis and characterization of ligands (L2) C18H10N4, (L3) C19H12N4, (L4) C18H9ClN4, precursors (1) [Ru3O(OAc)6(CH3OH)3]CH3COO, (2) [Ru3O(OAc)6(CO)(CH3OH)2], (3) [Ru3O(OAc)6(CO)(py)2], (4) [Ru3O(OAc)6(py)2(CH3OH)]PF6 and the complexes (1-5), [Ru3O(OAc)5(py)2(L)] PF6, (where py = pyridine, L1 = dppn, L2 = dppz, L3 = dppzCH3, L4 = dppzCl, L5 = phen). NMR data showed that the ortho-metallation of phenazine ligands affects the structure of the complexes, with severe symmetry lowering. On the other hand, the investigation of the electronic and electrochemical properties indicated that presence of different substituents and the basicity of the ortho-metallated ligands influence little the properties of the unit [Ru3O]+. In terms of the electronic structure of the complexes, this effect indicates that there are no significant -type interactions between the orbitals of the [Ru3O]+ unit and ortometalated ligands. This fact may arise from the lack of planarity between the [Ru3O]+ unit and the phenazine ligands. The results of cytotoxicity in tumor cell and non-tumor cell lines showed that the complexes have a greater cytotoxic effect against tumor cells than free ligands, as well as low cytotoxicity against the non-tumor cell. These results have shown that the series with ortometal ligands brings the best performing examples already observed in our research group, compared to other trinuclear acetates of ruthenium with -oxo bridge, against melanoma cancer. The interaction studies with target biomolecules showed that the complexes interact with DNA and HSA. With the DNA, we observed interactions of an electrostatic nature, with contribution of the intercalation mechanism as the size and extent of conjugation of the orthomolected ligands increases, and the intercalation process is favored in the case of complex (1) with the dppn binder. Interaction studies of the complexes (1-5) with the HSA were performed. High complex-protein association constants (of the order 109 M-1) and alterations in the secondary structure were observed in the presence of the complexes (1-5). The thermodynamic parameters of interaction with DNA and HSA indicated that the clusters-biomolecules interactions also present hydrophobic contributions (AU)

FAPESP's process: 14/25561-8 - Trinuclear ruthenium carboxylates with functional ligands CO, NO and intercalators: chemical study and interactions with biomolecules target
Grantee:Camila Fontes Neves da Silva
Support type: Scholarships in Brazil - Doctorate