Advanced search
Start date
Betweenand


Development of microprobes and applications on interfacial dynamics processes using scanning electrochemical microscopy

Full text
Author(s):
Pollyana Souza Castro
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Mauro Bertotti; Tiago Luiz Ferreira; Jairo Jose Pedrotti; Maiara Oliveira Salles; Roberto Manuel Torresi
Advisor: Mauro Bertotti
Abstract

The study reported in this thesis shows in details the fabrication and characterization of different electrochemical microsensors which have been employed as probes in SEPM. Thus, the characterization of surfaces can be performed by exploiting different interfacial phenomena that are relevant to life sciences. In this sense, the interfaces of crystalline materials such as hydroxyapatite (dental materials) and calcite were the focus of this study. Thus, different SEPM techniques were explored in order to obtain relevant information related to dental materials processes such as acid erosion and hypersensitivity. Initially, platinum microelectrodes were developed employing conventional methodology that utilizes microfibers encapsulated in glass capillaries. Amperometric SECM mode was used to obtain information regarding the topography changes of tooth enamel caused by contact with acid chemicals. In addition, SECM was used to study the transport of electroactive species in dentin samples. Investigations related to the treatment of dental hypersensitivity and dental whitening were also evaluated. SECM results were compared with SEM images obtained under the same experimental conditions. Ion-selective microelectrode (ISME) based on the ionophore membrane sensitive to calcium ions were also developed and characterized followed by application in SECM potentiometric mode. The acid dissolution of bovine enamel (dental erosion) was investigated at different pH values (2.5; 4.5; 6.8). In addition, the transport of calcium ions through synthetic porous membranes was evaluated at a tip/substrate distance of 300µm. Changes in calcium ion flux were studied in the presence and absence of magnetic fields generated by magnetite nanoparticles incorporated into the porous membrane. Calcite microcrystals easily synthesized by precipitation method were used as a model of an interfacial surface for investigations which can be correlated to the dental materials. Thus, glass nanopipette filled with supporting electrolyte was fabricated and used as SICM probe. The high resolution topographic mapping of the calcite microcrystal was obtained using hopping mode. Additionally, ISME-SICM multifunction probes were developed and characterized for simultaneous investigations related to the topographical changes and quantification of local calcium ions on the surface of a calcite microcrystal. The addition of acidic reagents in the SICM channel promoted the dissolution of the microcrystal surface and dissolution kinetic data were obtained. Investigations in neutral medium were also studied using the ISME-SICM multifunctional probe. The experimental results were also compared with those obtained by computer simulation. (AU)

FAPESP's process: 11/11151-4 - Scanning Electrochemical Microscopy (SECM) as a tool in the study of transport of chemical species in teeth
Grantee:Pollyana Souza Castro
Support Opportunities: Scholarships in Brazil - Doctorate