Advanced search
Start date
Betweenand


Investigation of photoinduced reactions under visible light in pure mesoporous TiO2 films and modified with gold nanoparticles via mass spectrometry

Full text
Author(s):
Diego Holanda Pereira de Souza
Total Authors: 1
Document type: Master's Dissertation
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Vitor de Moraes Zamarion; Juliano Alves Bonacin; Tiago Araujo Matias
Advisor: Vitor de Moraes Zamarion
Abstract

Titania (TiO2) is a widely studied material due to its low toxicity, high availability and to have properties that allow it to be used in a variety of photocatalytic applications. Its photocatalytic activity against the degradation of organic contaminants, for instance, can be even improved when preparing a mixture of phases of this material, as TiO2 P- 25 presents. However, its high band gap allows it to be used only when affected by high energy electromagnetic radiation (&#955;< 390 nm). The present work demonstrates that when TiO2 P-25 is synthesized in the form of mesoporous films, its band gap is reduced, and it starts to present photocatalytic activity under visible light. This reduction is attributed to the heat treatment that is applied during the preparation process of the material. In order to verify its activity in the absence of UV radiation, a study was conducted based on the analysis of the photodegradation rate of 2-naphthol, methyl orange and 2,4,6-trimercapto-1,3,5-triazine molecules by mass spectrometry using the compound ammonium hexafluorophosphate as an internal standard. The developed methodology can also be applied to conduct other semiquantitative assays via mass spectrometry. It was observed that TiO2 films induced 2-naphthol photooxidation under visible light and in the presence of oxygen gas after 6 hours of reaction. Photodegradation of methyl orange and 2,4,6-trimercapto-1,3,5-triazine was also confirmed, yet at a slower rate. The process was also observed by the identification of a methyl orange photooxidation by-product in the mass spectrum and from the decay of its absorption peak at 468 nm by UV-Vis spectrophotometry. It was also observed that titania may have its photocatalytic activity reduced by raising the pH of the medium. Furthermore, it was also produced titania films modified with gold nanoparticles through use of thioglycolic acid as a mediator and by drop casting method. Both techniques formed homogeneous films of gold nanoparticles over TiO2, and their photocatalytic activity were also evaluated. Nevertheless, the presence of the metal impaired the photocatalytic efficiency of titania by inhibiting its activity when excited by visible light. All in all, pure TiO2 P-25 films work under incidence of a wider range of the solar spectrum and has also the advantage of functioning as heterogeneous catalysts for photodegradation reactions of organic molecules and can be easily removed from the reaction medium at the end of the process. (AU)

FAPESP's process: 16/18354-1 - Studies of lability and inertia on the surface of plasmonic nanoparticles aiming the development of systems for molecular recognition and transfer of information
Grantee:Diego Holanda Pereira de Souza
Support Opportunities: Scholarships in Brazil - Master