Genetic modularity of families of protein disulphi... - BV FAPESP
Advanced search
Start date
Betweenand


Genetic modularity of families of protein disulphide isomerase and guanine dissociation inhibitor: computational, molecular and functional studies

Full text
Author(s):
Jéssyca Cristine Pavanelli
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina (FM/SBD)
Defense date:
Examining board members:
Francisco Rafael Martins Laurindo; Diego Bonatto; Carlos Frederico Martins Menck
Advisor: Francisco Rafael Martins Laurindo
Abstract

Redox pathways are important regulators of homeostasis and cell signaling, but the understanding of the mechanisms of these processes is incomplete. Thiol proteins such as protein disulfide isomerase (PDI) can be modulators of these pathways. PDI (PDIA1) is the prototype of the family of PDIs whose canonical function is a redox protein folding in the endoplasmic reticulum. In addition, PDI exerts regulatory NADPH oxidase, the main sources of cellular oxidant, and is required for activation RhoGTPases, cytoskeletal organization and migration of vascular cells. In the study of mechanisms by which regulates PDI RhoGTPases, we showed in computer networks and co-imunoprecitation experiments association between PDIA1 and the regulator of RhoGTPases, RhoGDI?. In addition, we identified strong proximity of the genes encoding these proteins. In this study, we characterize the profile and implications of this synteny. .A bioinformatic analysis by programs Ensembl, NCBI and UCSC shows a pattern of synteny between different isoforms of these two families: PDIA1 (P4HB), PDIA2 (PDIP) and PDIA8 (Erp27) are neighbors , respectively RhoGDIalfa, and RhoGDIy RHOGDIbeta with corresponding intergenic regions 7.1, 2.9 and 0:14 kb in different chromosomes of H. sapiens. The pattern of this synteny was strongly maintained in C. elegans, some fish and evenly amphibians, reptiles, birds and mammals. Yeasts express on the same chromosome, but in distant places (i.e macrosintenia) orthologs of PDIA1 and RhoGDI?, but do not express other syntenics PDIs and RhoGDIs in complex eukaryotes. However, synteny between PDI and RhoGDI was also observed in the plant A. thaliana, no evidence of a common ancestor. The syntenic pairs are associated with the stored neighboring blocks, but different for each pair, while each block contains a gene encoding a regulator of distinct PP1 (protein phosphatase-1). Phylogenetic analysis showed similar topology between the two famílias. The identified binding sites common transcription factors between different pairs, which mainly indicated ontology development, metabolic and immune response. The study of possible functional implications of synteny showed that manipulations of PDIA1 protein expression do not promote consistent change in protein expression RhoGDI, both in vitro (silencing of PDI by siRNA and overexpression of inducible lentiviral vector) and in vivo (transgenic mice overexpressing constitutive of PDIA1). The study of possible functional implications of synteny showed that manipulations of PDIA1 protein expression do not promote consistent change in protein expression RhoGDIalfa, both in vitro (silencing of PDI by siRNA and overexpression of inducible lentiviral vector) and in vivo (transgenic mice overexpressing constitutive of PDIA1). However, changes of gene expression of both genes in the intima of mouse carotid arteries during remodeling induced by flow were strongly correlated. Immunoprecipitation experiments and co-location to confocal microscopy suggested physical interaction between PDIA1 and RhoGDIAalfa. Thus, these data show an intriguing pattern of evolutionary conservation of gene proximity between POIs and RhoGDIs not common in eukaryotes. sintênicos genes often encode proteins that tend to interact physically and / or functionally. Indeed, our data suggest co-regulation and physical interaction between PDIA1 and RhoGDIAalfa, supporting the convergence of these proteins as a possible mechanism involved in redox regulation of cytoskeleton by PDIA1 (AU)

FAPESP's process: 12/10203-3 - Genetic modularity of protein disulfide isomerase and guanine dissociation inhibitor families: computational and molecular studies and cloning of the regulatory region
Grantee:Jéssyca Cristine Pavanelli
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)