Advanced search
Start date
Betweenand


Development of molecular photovoltaic devices

Full text
Author(s):
Luis Fernando de Oliveira Furtado
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Koiti Araki; Paola Corio; Ivo Alexandre Hummelgen; Ana Flávia Nogueira; Susana Inés Córdoba de Torresi
Advisor: Koiti Araki
Abstract

In this thesis some aspects concerning the development of molecular photovoltaic systems are discussed. Themes of current interest such as the synthesis of new sensitizers for dye-sensitized solar cells, the development of new photoactive materials, and Supramolecular Chemistry are treated, as well as the application of photovoltaic systems in molecular electronics, specifically in the development of molecular logic gates and memory devices. The porphyrin TBPyP, comprised of four 2,2\'-bipyridine ligands covalently linked to the porphyrin meso carbons, was synthesized. This porphyrin derivative was used as a building block on supramolecular systems. The utilization of these supramolecular species in solar cells (Grätzel cells) is discussed. The coordination of the porphyrin TBPyP with transition metal ions gave rise to molecular wires, which are investigated about its potential use in molecular electronics. New multilayer photovoltaic systems, using thermo-evaporated porphyrin films as photoactive elements and V2O5 films as passive electrodes, had their efficiency and mechanism studied. The confection of hybrid films comprised of gold nanoparticles and organic ligands was developed and its application in photovoltaic systems, as well as in memory devices, was investigated. New molecular logic gates were realized using the a Grätzel cell in its conventional configuration, sensitized by ruthenium trigonal clusters synthesized to this end. (AU)