Advanced search
Start date
Betweenand


Characterization of molecular distillation process applied to petroleum heavy factions and development of TBP curve correlation

Author(s):
Melina Savioli Lopes
Total Authors: 1
Document type: Master's Dissertation
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Maria Regina Wolf Maciel; Cesar Benedito Batistella; Osvair Vidal Trevisan
Advisor: Rubens Maciel Filho
Abstract

Some of ethanol lost by evaporation during its fermentation production process may be recovered using an absorption column, which requires a robust control system. This equipment also is used on carbonic gas treatment, a by-product of this process. In the present work, the development of nonlinear feedforward-feedback controllers, based on a neural network inverse model, was proposed and tested to manipulate the absorbent flow rates in order to control the residual ethanol concentration in the effluent gas phase at the first absorption column, and the residual water at the second one. Simulation studies were carried out for the regulator and servo problem, for both absorption columns studied. The neural controller proposed outperformed a conventional PID, because the response time, and also the overshoot were smaller when the neural controller was applied. The results were confirmed by the ITAE (integral of time multiplied by the absolute error), IAE (integral of absolute error) and ISE (integral of square error) parameters. The measurement uncertainties influence on control system performance was tested for three levels: 5, 10 and 15%. The uncertainties were introduced on ethanol/residual water concentration on gas phase. For the ethanol recovery column, neither PID nor the neural controller drove the controlled variable exactly to the set point, however, the neural controller provided a smaller oscillation for all uncertainty levels tested, for regulator and servo problem. The neural controller also outperformed PID in CO2 treatment column. For the regulator and servo problems the neural controller successfully proceeded when the uncertainty level was 5% or 10%, while the PID did not deal adequately with uncertainties above 5%. Therefore, the proposed neural controller proved be an attractive control solution for the absorption columns of ethanol production process by fermentation, especially when the input variables carry small uncertainties ( less than 10%) from the sensors (AU)