Advanced search
Start date
Betweenand


Bulk polymerization to synthetize polymeric nanocomposites using layered hydrxide salts (LHS)

Full text
Author(s):
Samara Boaventura de Moraes
Total Authors: 1
Document type: Master's Dissertation
Press: Campinas, SP.
Institution: Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia Química
Defense date:
Examining board members:
Liliane Maria Ferrareso Lona; Elizabeth Fatima de Souza; Maria Ingrid Rocha Barbosa Schiavon
Advisor: Liliane Maria Ferrareso Lona
Abstract

Interest in the nanocomposite polymeric matrix has grown dramatically in recent years because these materials exhibit better mechanical and thermal properties, among others, when compared to conventional materials. Among the different types of nanocomposite polymeric matrix, those reinforced with layered compounds has been widely studied. The layered hydroxides salts (LHSs) are examples of layered compounds and the study of layered hydroxides salts is a new subject. Studies in the literature involving the LHSs are relatively scarce and most of them are related to their synthesis and structural characterization. In this work nanocomposites of polystyrene using layered hydroxides salts as a reinforcing agent were synthesized. The nanocomposites were produced via in situ bulk polymerization. Polymer nanocomposites were synthesized with different mass fractions of LHS. LHSs intercalated with dodecyl sulfate anion and laurate anion was produced. The pure polymer was characterized by analysis of gel permeation chromatography, gravimetric analysis, x-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric and flammability test. The layered hydroxides salts were characterized by swelling of Foster techniques, x-ray diffraction and Fourier transform infrared spectroscopy. The synthesized polymer nanocomposites were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric and flammability test. One of the synthesized nanocomposites was chosen and gravimetric analysis was performed to assess the influence of LHS on the conversion of the polymer. Among the material properties, the results obtained show that the nanocompósito synthesized tend to have improved flammability compared to the pure polymer, and also present final temperature higher than the degradation of polystyrene, and do not significantly influence the glass transition temperature of the polymer (AU)

FAPESP's process: 11/05452-1 - Bulk polymerization to synthetize polymeric nanocomposites using layered hidroxide salts
Grantee:Samara Boaventura de Moraes
Support Opportunities: Scholarships in Brazil - Master