Advanced search
Start date
Betweenand


Design and manufacturing of moulds in isostatic pressing using CAD/CAE technology and rapid prototyping.

Full text
Author(s):
Rodrigo Bresciani Canto
Total Authors: 1
Document type: Master's Dissertation
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Escola de Engenharia de São Carlos (EESC/SBD)
Defense date:
Examining board members:
Jonas de Carvalho; Carlos Alberto Fortulan; Sergio Persival Baroncini Proenca
Advisor: Jonas de Carvalho
Abstract

This work presents a methodology for the design and fabrication of ceramic powder isostatic pressing moulds using CAD and CAE tools and Rapid Prototyping. The isostatic pressing process was simulated using the finite element method. The compaction behavior of ceramic powder is described by the Drucker-Prager/cap constitutive model and the behavior of elastomeric material is described by the Mooney-Rivlin constitutive model within the commercial finite element software ABAQUS®. These simulations are required to adjust the mould design in order to suit the geometry of the compact and green machining allowance. For this study, it is used a case study consisting of pressing a ceramic sphere for hip implant stem. A virtual prototype was designed from the geometry obtained from the simulations and reproduced in Acrylonitrile Butadiene Styrene (ABS) polymer, using the Rapid Prototyping technology - Fused Deposition Modeling (FDM). Silicone moulds were obtained from the polymer prototype and used to aid in the making of the elastomeric bag and mould support cage. The methodology used in this investigation was validate considering that the simulations yield to a good agreement with measured manufactured components. (AU)