Advanced search
Start date
Betweenand


Modulation of rhodopsin expression and signaling mechanisms evoked by endothelins in in pigment cell lines

Full text
Author(s):
Gláucia Jansen da Re Lopes
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo. , ilustrações.
Institution: Universidade de São Paulo (USP). Instituto de Biociências (IBIOC/SB)
Defense date:
Examining board members:
Ana Maria de Lauro Castrucci; Zulma Felisbina da Silva Ferreira; Antonio Carlos Oliveira; Cristoforo Scavone; Yur Maria e Souza Tedesco
Advisor: Ana Maria de Lauro Castrucci
Field of knowledge: Biological Sciences - Physiology
Indexed in: Banco de Dados Bibliográficos da USP-DEDALUS; Biblioteca Digital de Teses e Dissertações - USP
Location: Universidade de São Paulo. Biblioteca do Instituto de Biociências; D-1352
Abstract

Endothelins (ETs) and sarafotoxins (SRTXs) belong to a family of vasoconstrictor peptides, which can regulate pigment migration and/or production in vertebrate pigment cells (chromatophores). In teleostean fish, ETs/SRTXs induce pigment migration. In human melanocytes, ETs promote melanogenesis and mitogenesis. ETs also regulate the transcription of several genes. These effects are mediated by different intracellular signaling pathways, such as the phospholipase C (PLC), protein kinase C (PKC) and the mitogen-activated protein kinase (MAPK) cascade. Rhodopsin is a photopigment responsible for photon detection, found in vertebrate rod cells. Rhodopsin gene transcription regulation in teleostean fish and mammals seems to occur through conserved elements. Chromatophores can respond directly to light, promoting the migration of pigment granules along the cells dedritic processes. These light-evoked responses are probably mediated by photoreceptive molecules expressed by these cells. The teleost Carassius auratus erythrophoroma cell line, GEM-81 and Mus musculus B16 melanocytes express rhodopsin, as well as the ET receptors, ETB and ETA, respectively. The aim of this study was to determine whether 1) rhodopsin mRNA levels could be modulated by SRTX S6c in GEM-81 cells and ET-1 in B16 cells and the intracellular signaling mechanisms involved; 2) rhodopsin protein levels could also be modulated by SRTX S6c in GEM-81 and ET-1 in B16 cells. Using real time (quantitative) PCR, we demonstrated that SRTX S6c and ET-1 modulate rhodopsin mRNA levels in GEM-81 and B16, respectively, in a time and dose-dependent way. In GEM-81, this modulation involves the activation of a PKC and the MAPK cascade. In B16, it involves PLC, calcium as a second messenger, calmodulin, a calcium/calmodulin dependent kinase and PKC. The Western blotting assays demonstrated that in GEM-81 cells rhodopsin protein levels are not significantly altered by a 24-hour treatment with 10-9M SRTX S6c, suggesting the involvement of post-transcriptional mechanisms in the modulation of rhodopsin expression. In B16 cells, whose total protein was extracted 0 or 6 hours after the 24-hour treatment with 10-10M ET-1, rhodopsin protein levels were not significantly altered. When the cells total protein was extracted 3 hours after the 24-hour treatment with ET-1, a significant reduction in rhodopsin protein levels was observed. These results also suggest the involvement of post-transcriptional mechanisms in the modulation of rhodopsin expression in this cell line. These mechanisms could be somehow exacerbated in B16 cells whose protein was extracted 3 hours after the treatment. (AU)