Advanced search
Start date
Betweenand


Thin films preparation and characterization of the Y2O3-Er2O3-Al2O3-B2O3.

Full text
Author(s):
Lauro June Queiroz Maia
Total Authors: 1
Document type: Doctoral Thesis
Press: São Carlos.
Institution: Universidade de São Paulo (USP). Instituto de Física de São Carlos (IFSC/BT)
Defense date:
Examining board members:
Valmor Roberto Mastelaro; Andrea Simone Stucchi de Camargo Alvarez Bernardez; Jochen Fick; Alain Ibanez; Sidney José Lima Ribeiro
Advisor: Valmor Roberto Mastelaro
Abstract

This work specifies the synthesis and the characterization of amorphous and crystalline powder and thin films materials belonging to the Er2O3-Y2O3-Al2O3-B2O3 system. The main objective of this work was to develop amorphous thin film samples near the YAI3(BO3)4 composition with yttrium partially substituted by erbium Y1-xErxAl3(BO3)4 with the aim of applying these thin films as waveguide amplifiers in integrated optical systems. The polymeric precursor and the sol-gel methods were applied in order to produce such thin films. After the first step where the conditions to obtain very stable resins and sols was established, different parameters were adjusted aiming the deposition of thick and stable thin films. To well define the best conditions to obtain amorphous and dense thin films, the powder samples of the same compositions were first characterized by thermal analysis techniques, X-ray diffraction, IR and Raman spectroscopies, high resolution electron microscopy and atomic force microscopy. From thermal analysis and structural results, it was observed that the samples prepared from the polymeric precursor and sol-gel methods exhibit glass transition temperatures, Tg, at 723 and 746 &#176C and cristallisation temperatures, Tc, at 814 and 830 &#176C, respectively. The heat treatment at around 1150 &#176C of Y0,9Er0,1Al3(BO3)44 powder sample containing a smaller amount of boron in excess produced by both methods lead to the formation of a crystalline solid solution of the same composition without the presence of secondary phases. These results show that dense, free of cracks, thick and homogeneous thin films could be obtained when they were submitted at a heat treatment in temperatures between Tg and Tc. From the \"m-line\" spectroscopy technique and luminescence measurements we observed that the Y0,9Er0,1Al3(BO3)4 amorphous thin films can be considered as monomode waveguides showing a high luminescence intensities and a lifetime similar to other amorphous borate systems. These results show the potentiality to apply such amorphous thin films as optical planar amplifiers. (AU)