Advanced search
Start date

Structural and Regulatory Characterization of Genes MGC16121 and CR596471

Full text
Bruna Rodrigues Muys
Total Authors: 1
Document type: Master's Dissertation
Press: Ribeirão Preto.
Institution: Universidade de São Paulo (USP). Faculdade de Medicina de Ribeirão Preto
Defense date:
Examining board members:
Wilson Araújo da Silva Junior; Tiago Campos Pereira; Daniel Onofre Vidal
Advisor: Wilson Araújo da Silva Junior

CR596471 and MGC16121 genes lie on chromosome X (Xq26) between the HPRT1 and PLAC1 loci, a region rich in genes associated with human reproduction. The importance of such genes is the possibility that they might be involved in placental and fetal development, aware that they are expressed in few normal tissues. Deletions in mice around the orthologous gene of human HPRT1 affect their development or lead to stillbirth. However, this phenotype is not observed when this gene is mutated. So we can assume that the abnormal phenotype of mice cannot be due to HPRT1 deficiency, but to genes and/or microRNAs (miRNAs) nearby. These results support the idea of investigating the mechanisms involved in the regulation of the MGC16121 and CR596471 genes, and their neighbor miRNAs. This study aimed to characterize the structure, expression and regulation mechanism by methylation of genes MGC16121 and CR596471. In addition, the expression profile and methylation regulation of the neighbor miRNAs (miR-424, 503, 450a, 450b-5p and 542-3p) were analyzed. MGC16121 was demonstrated to be placenta specific and expressed in 50% of 18 tumor cell lines analyzed. CR596471 and the neighbor miRNAs were more expressed in placenta than in any other normal tissue analyzed. The former was also expressed in all tumor cell lines evaluated. There was significant and positive correlation between all genes and miRNAs regarding normal tissue expression. However, the same was not observed for the tumor cell lines. With respect to regulation, the genes CR596471 and MGC16121, and miRNAs miR-424, 503 and 450a were negatively regulated by DNA methylation at least in one of the three cell lines treated with the demethylating agent 5- aza-2-deoxycytidine. Supporting these results, the CpG dinucleotides from CpG islands located near the CR596471 and MGC16121 5 regions were at least partially demethylated after the same treatment. The data concerning to genes primary structures indicate that the transcripts, despite of being considered lncRNAs, presented mRNAs characteristics. It was determined one transcript for MGC16121 gene which consisted of three exons, and for CR596471 gene, two transcripts were found, one with three exons and other composed of two exons. The transcripts herein determined are relatively conserved when compared to RNAs sequences found in other mammals, mostly in primates. Besides, the MGC16121 transcript presents similar secondary substructures to those found in homologous transcripts from other primate species. According to the results, MGC16121 gene could be considered a possible good biomarker to diagnosis, prognosis and perhaps to therapies against cancers. Nevertheless, more experiments must be accomplished in order to verify the functions of MGC16121 and CR596471 genes, in addition to evaluate more robustly the competence of MGC16121 gene to be used as a tool in medicine against cancer. (AU)

FAPESP's process: 11/04154-7 - Structure and expression analysis of the genes MGC16121 and CR596471
Grantee:Bruna Rodrigues Muys
Support type: Scholarships in Brazil - Master