Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Interfacial waves in stratified viscous oil-water flow

Full text
de Castro, Marcelo S. [1] ; Rodriguez, Oscar M. H. [2]
Total Authors: 2
[1] Univ Estadual Campinas, Fac Mech Engn, Dept Energy, BR-13083860 Campinas, SP - Brazil
[2] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Mech Engn, BR-13566970 Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Web of Science Citations: 11

The analysis of the interfacial wave properties is an important point in understanding of many aspects of separated-flow patterns (annular and stratified). One may cite flow pattern stability, pressure drop and heat transfer as characteristics affected by the wave properties. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interface, i.e., average wave shape, wave speed, amplitude and wavelength as a function of flow properties. Studies on waves in stratified liquid-liquid flow are scanty, even more when related to viscous oils. This article offers new experimental data on interfacial waves collected in a glass test line of 12 m and 0.026 m i.d., oil (density and viscosity of 854 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and tap water as the working fluids; the stratified flow was filmed with a high speed video camera at several inclinations from horizontal (-5 degrees, 0 degrees, 5 degrees, 10 degrees). New experimental data and available literature data of interfacial waves in oil-water flow were collected, analyzed and correlated to the flow properties by dimensionless numbers of Reynolds, Froude and Weber. A second-order Fourier series is proposed to model the wave shape. The correlations can be used to predict the average wave geometry and wave speed of typical oil-water interfacial waves within a significant range of superficial velocities and pipe inclinations. Considering the simplicity of the proposed correlation, the agreement between data and predicted wave is encouraging. (C) 2014 Elsevier Inc. All rights reserved. (AU)

FAPESP's process: 10/03254-5 - Spatial analisys of a perturbation wave in parallel two-phase flow
Grantee:Marcelo Souza de Castro
Support type: Scholarships in Brazil - Doctorate (Direct)