Advanced search
Start date

Meltwater Impacts on the Ocean Circulation since the Last Glacial Maximum

Full text
Juliana Marini Marson
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Instituto Oceanográfico (IO/DIDC)
Defense date:
Examining board members:
Ilana Elazari Klein Coaracy Wainer; Rodrigo Kerr Duarte Pereira
Advisor: Ilana Elazari Klein Coaracy Wainer; Mauricio Magalhaes Mata

During the last 21,000 years, the planet underwent major changes. The atmospheric CO2 concentration increased ∼50% (Monnin et al., 2001) and the mean global temperature increased 4.0±0.8°C until pre-industrial times (Annan and Hargreaves, 2013). As a consequence of this warming, the huge ice sheets that covered North America, Northern Europe and part of Eurasia melted and the polar and subpolar ocean surface received a large amount of freshwater from these retracting ice sheets. The input of freshwater alters pressure gradients on the sea surface and also the density of water masses. Since the ocean circulation is partially driven by density differences, the deglacial meltwater has the potential to affect the ocean circulation. In this PhD thesis, the impacts of meltwater input since the Last Glacial Maximum into the high latitudes, especially of the Atlantic Ocean, are studied using the results of a transient simulation of the last 22 thousand years with NCAR-CCSM3. The main results show that: (1) the Atlantic Meridional Overturning Circulation (AMOC) slowed down during freshwater discharge events near dense water formation regions; (2) North Atlantic Deep Water (NADW) was absent in the beginning of the deglaciation, while its intermediate version -- Glacial North Atlantic Intermediate Water (GNAIW) -- was being formed; (3) GNAIW was a fresh and cold water mass, very similar to the Antarctic Intermediate Water (AAIW) in the thermohaline domain; (4) the deep and abyssal Atlantic basin was dominated by AABW in the first half of the simulation; (5) the transition from GNAIW to NADW occurred after the Heinrich Stadial 1; (6) when the NADW appeared, around 12 thousand years ago (ka), AABW retracted and was constrained to lie near the bottom; (7) the presence of a low-salinity layer in the Southern Ocean surface around ∼14,000 years ago prevented the release of heat from deep waters to the atmosphere, warming the AABW; (8) the Antarctic Coastal Current (ACoC) was reinforced by the meltwater discharge from the Antarctic ice sheet. Using the Indian Ocean as a comparison, it was observed that the North Atlantic affected the western tropical Indian through atmosphere, while climatic variations associated with the Southern Hemisphere were transmitted via ocean -- especially through intermediate waters. Although the initial conditions in the glacial and modern ocean are different, this study may be used to foresee the possible responses of the ocean to the accelerated melting of glaciers and ice sheets, which are associated with dramatic climate changes. (AU)

FAPESP's process: 11/02047-9 - Meltwater pulses in the Last Glacial Maximum transition: impacts on physical and dynamical structure of Southern Ocean
Grantee:Juliana Marini Marson
Support type: Scholarships in Brazil - Doctorate