Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Differential effects of temperature on the feeding kinematics of the tadpoles of two sympatric anuran species

Full text
Author(s):
de Sousa, Veronica T. T. [1] ; Nomura, Fausto [2] ; de C. Rossa-Feres, Denise [3] ; Andrade, Gilda V. [4] ; Pezzuti, Tiago L. [5] ; Wassersug, Richard J. [6, 7] ; Venesky, Matthew D. [8]
Total Authors: 7
Affiliation:
[1] Univ Fed Goias, PPG Ecol & Evolucao, BR-74001970 Goiania, Go - Brazil
[2] Univ Fed Goias, Dept Ecol, BR-74001970 Goiania, Go - Brazil
[3] Univ Estadual Paulista, Dept Bot & Zool, Sao Paulo - Brazil
[4] Univ Fed Maranhao, Dept Biol, Sao Luis, Maranhao - Brazil
[5] Univ Fed Minas Gerais, Inst Ciencias Biol, Dept Zool, Belo Horizonte, MG - Brazil
[6] Dalhousie Univ, Dept Med Neurosci, Halifax, NS - Canada
[7] Univ British Columbia, Gordon & Leslie Diamond Care Ctr, Dept Urol Sci, Vancouver, BC V5Z 1M9 - Canada
[8] Allegheny Coll, Dept Biol, Meadville, PA 16335 - USA
Total Affiliations: 8
Document type: Journal article
Source: JOURNAL OF EXPERIMENTAL ZOOLOGY PART A-ECOLOGICAL GENETICS AND PHYSIOLOGY; v. 323, n. 7, p. 456-465, AUG 1 2015.
Web of Science Citations: 1
Abstract

Temperature impacts ectotherm performance by influencing many biochemical and physiological processes. When well adapted to their environment, ectotherms should perform most efficiently at the temperatures they most commonly encounter. In the present study, we tested how differences in temperature affects the feeding kinematics of tadpoles of two anuran species: the benthic tadpole of Rhinella schneideri and the nektonic tadpole of Trachycephalus typhonius. Benthic and nektonic tadpoles have segregated distributions within ponds and thus tend to face different environmental conditions, such as temperature. Muscle contractile dynamics, and thus whole organism performance, is primarily temperature dependent for ectotherms. We hypothesized that changes in mean temperatures would have differential effects on the feeding kinematics of these two species. We conducted a laboratory experiment in which we used high-speed videography to record tadpoles foraging at cold and warm temperatures. In general, tadpoles filmed at warm temperatures opened their jaws faster, attained maximum gape earlier, and exhibited shorter gape cycles than tadpoles in cold temperatures, irrespective of species. We also found species x temperature interactions regarding the closing phase velocity, and the percentage of time it takes tadpoles to achieve maximum gape and to start closing their jaws. These interactions could indicate that these two co-occurring species differ in their sensitivity to differences in water temperature and have temperature-dependent feeding strategies that maximize feeding performance in their preferred environment. J. Exp. Zool. 323A: 456-465, 2015. (c) 2015 Wiley Periodicals, Inc. (AU)

FAPESP's process: 10/52321-7 - Diversity and ecology of tadpoles from Central Amazonia
Grantee:Denise de Cerqueira Rossa-Feres
Support type: BIOTA-FAPESP Program - Regular Research Grants