Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

CaTiO3 and Ca1-3xSmxTiO3: Photoluminescence and morphology as a result of Hydrothermal Microwave Methodology

Full text
Pinatti, Ivo M. [1] ; Mazzo, Tatiana M. [2] ; Goncalves, Rosana F. [3] ; Varela, Jose A. [4] ; Longo, Elson [4] ; Rosa, Ieda L. V. [1]
Total Authors: 6
[1] Univ Fed Sao Carlos, Dept Chem, LIEC, INCTMN, BR-13565905 Sao Carlos, SP - Brazil
[2] Fed Univ Sao Paulo UNIFESP, Inst Ciencia & Engn Mar, BR-11030400 Santos, SP - Brazil
[3] UNIFESP Fed Univ Sao Paulo, BR-09972270 Diadema, SP - Brazil
[4] State Univ Sao Paulo UNESP, Inst Chem, LIEC, INCTMN, BR-14800900 Araraquara, SP - Brazil
Total Affiliations: 4
Document type: Journal article
Source: CERAMICS INTERNATIONAL; v. 42, n. 1, B, p. 1352-1360, JAN 2016.
Web of Science Citations: 7

Calcium titanate (CaTiO3 - CT) and samarium doped calcium titanate (CaTiO3:Sm3+ - CT:Sm) powders in different Sm3+ concentrations (0.5-5.0% molar ratio of Sm3+) were obtained by the Hydrothermal Microwave Methodology at 140 degrees C for 16 min. These crystals were structurally characterized by X-ray diffraction (XRD) and micro-Raman (MR) spectroscopy. Field emission scanning electron microscopy images were employed to observe the shape and size of the crystals. The optical properties were investigated by ultraviolet visible (UV Vis) absorption and photoluminescence (PL) measurements. The XRD indicated structural organization at long range while MR revealed short range order for all undoped and Sm-doped samples. Morphological analysis revealed a new cubic morphology for CT:Sm, presenting an average size of 3.0 mu m. Further, the ultraviolet visible absorption spectra indicated the existence of intermediary energy levels within the band gap. The maximum intensity PL emission occurred due to (4)G(5/2) -> H-6(7/2) and (4)G(5/2) -> H-6(9/2), transitions of Sm3+. CIE chromaticity coordinates of the samples were determined and support these materials are promising candidates for applications as phosphors in the visible orange range. This research concluded that the methodology employed here was responsible for the presence of unusual and interesting properties for these new luminescent materials. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved. (AU)

FAPESP's process: 08/57872-1 - National Institute for Materials Science in Nanotechnology
Grantee:Elson Longo da Silva
Support type: Research Projects - Thematic Grants
FAPESP's process: 13/07296-2 - CDMF - Center for the Development of Functional Materials
Grantee:Elson Longo da Silva
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC