Advanced search
Start date

Organic matter chemistry and pedogenesis in humic Latosols under cerrado vegetation

Full text
Marina Justi
Total Authors: 1
Document type: Master's Dissertation
Press: Piracicaba.
Institution: Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC)
Defense date:
Examining board members:
Pablo Vidal Torrado; Nilton Curi; Carlos Alberto Silva
Advisor: Pablo Vidal Torrado

Soil organic matter (SOM) is an important carbon (C) stock in terrestrial ecosystems. C in soils can be released to the atmosphere in CO2 form by SOM decomposition, or can be stored with residue inputs and SOM retention in the soils. In this sense, it is important to understand the SOM stability mechanisms to predict how soils behave under climatic or human management induced environmental changes. Latosols occupy 40% of the national territory in Brazil. Some of them have a hyper thick A horizon with a major C stock, Humic Latasols. Aspects that underlie the formation of humic A horizon are still unclear, and mainly concern SOM dynamics, SOM preservation mechanisms, and SOM distribution with depth. The aim of this work is to understand the genesis of Humic Latosols through molecular characterization of SOM by pyrolysis coupled to gas chromatography and mass spectrometry (pyrolysis - GC/MS). For this purpose samples from two profiles (LH1, LH2) were collected, and in addition a reference profile was sampled (Latosol without humic characteristics, LNH). All profiles were located near Grão Mogol city (MG) under a semi-humid tropical climate and Cerrado vegetation. Morphology at different levels (field, bloom and microscope) showed that charcoal was abundant in all three profiles, and an extremely high biological activity. Profiles were sampled in detail and all samples were submitted to sequential physical fractionation and chemical extraction, generating the following SOM fractions: free light fraction (FLF); occluded light fraction (OLF); NaOH extractable fraction (EXT) and residue (RES). The molecular composition of the samples was studied by pyrolysis-GC/MS. Profile morphology evidence the long and intense biological activity (faunal and roots) in this soils, in the past and present time. This explains the microaggregate abundance and consequent macroporosity, and also the distribution of charcoal fragments in all of A and part of B horizon. These fragments have submilimetrical a milimetrical dimensions, suggests its fragmentation along the time. It was evidenced too, the bigger charcoal content in LHs than LNH. The C distribution in the fractions was the same for all the studied profiles: RES>EXT>FLL>FLO, which shows the importance of the RES fraction for these soils. Pyrolysis products derived from black carbon (BC; polyaromatics hydrocarbons) were most abundant in RES and FLO. In the RES, PAHs were more abundant in the LH than LNH; confirming the biggest quantity of charcoals in LHs verified in morphology. A BC degradation index was established using factor analysis with all PAH and all fractions studied. Depth records of these parameter showed an increase with depth in both EX and RES, and showed no differences between the studied profiles. It is concluded, therefore, that the LH had a larger input of charcoal. It is hypothesized that the larger contribution from BC in LHs is related to local differences in fire intensity and/or more trees in the vegetation. (AU)

FAPESP's process: 14/21128-8 - Organic matter caracterization and pedogenesis in humic latossols under savanna vegetation
Grantee:Marina Justi
Support type: Scholarships in Brazil - Master