Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Gold nanoparticle-mediated electron transfer of cytochrome c on a self-assembled surface

Full text
Author(s):
Luz, Roberto A. S. [1] ; Crespilho, Frank N. [1]
Total Authors: 2
Affiliation:
[1] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: RSC ADVANCES; v. 6, n. 67, p. 62585-62593, 2016.
Web of Science Citations: 6
Abstract

The presence of gold nanoparticles (AuNPs) at the protein/electrode interface has a significant impact on the electrodic microenvironment, and allows the optimization of the activity catalysis as well as electrochemical properties. Here, we report a novel and accurate methodology to observe AuNP mediated electron transfer mechanism from Cytochrome c (Cyt c) to a polycrystalline gold surface. Poly(allylamine hydrochloride) molecules (PAH) were used as spacers between Cyt c and the electrode surface, and the electron rate constant within the PAH layer was measured in the presence and absence of AuNPs. Based on cyclic voltammetric experiments and Marcus theory, a four-fold increase in the electron rate constant was observed in the presence of AuNPs, and the reorganization energy was estimated to be 0.49 eV. Furthermore, AuNPs decreased the effective distance between the redox center of Cyt c and the electrode surface by 20%. These results suggest that the electron transfer properties of Cyt c based protein electrodes are significantly enhanced in the presence of the AuNPs. (AU)

FAPESP's process: 13/04663-4 - Enzymatic bioelectrodes applied in biofuel cells: experimental and simulation
Grantee:Frank Nelson Crespilho
Support Opportunities: Regular Research Grants
FAPESP's process: 13/14262-7 - Nanostructured films from biologically-relevant materials
Grantee:Osvaldo Novais de Oliveira Junior
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 15/16672-3 - Development of High Performance Bioelectrodes for Application in Miniaturized Biofuel Cell
Grantee:Frank Nelson Crespilho
Support Opportunities: Regular Research Grants
FAPESP's process: 09/17898-4 - Electrochemical Study of Interaction between Enzymes and Nanoparticles for Application in biological devices
Grantee:Roberto Alves de Sousa Luz
Support Opportunities: Scholarships in Brazil - Doctorate