Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid

Full text
Author(s):
Show less -
Berton, Mariana P. ; Fonseca, Larissa F. S. ; Gimenez, Daniela F. J. ; Utembergue, Bruno L. ; Cesar, Aline S. M. ; Coutinho, Luiz L. ; de Lemos, Marcos Vinicius A. ; Aboujaoude, Carolyn ; Pereira, Angelica S. C. ; de O Silva, Rafael M. ; Stafuzza, Nedenia B. ; Feitosa, Fabieli L. B. ; Chiaia, Hermenegildo L. J. ; Olivieri, Bianca F. ; Peripolli, Elisa ; Tonussi, Rafael L. ; Gordo, Daniel M. ; Espigolan, Rafael ; Ferrinho, Adrielle M. ; Mueller, Lenise F. ; de Albuquerque, Lucia G. ; de Oliveira, Henrique N. ; Duckett, Susan ; Baldi, Femando
Total Authors: 24
Document type: Journal article
Source: BMC Genomics; v. 17, NOV 25 2016.
Web of Science Citations: 12
Abstract

Background: Fatty acid type in beef can be detrimental to human health and has received considerable attention in recent years. The aim of this study was to identify differentially expressed genes in longissimus thoracis muscle of 48 Nellore young bulls with extreme phenotypes for fatty acid composition of intramuscular fat by RNA-seq technique. Results: Differential expression analyses between animals with extreme phenotype for fatty acid composition showed a total of 13 differentially expressed genes for myristic (C14:0), 35 for palmitic (C16:0), 187 for stearic (C18:0), 371 for oleic (C18:1, cis-9), 24 for conjugated linoleic (C18:2 cis-9, trans11, CLA), 89 for linoleic (C18:2 cis-9,12 n6), and 110 genes for a-linolenic (C18:3 n3) fatty acids. For the respective sums of the individual fatty acids, 51 differentially expressed genes for saturated fatty acids (SFA), 336 for monounsaturated (MUFA), 131 for polyunsaturated (PUFA), 92 for PUFA/SFA ratio, 55 for omega 3, 627 for omega 6, and 22 for omega 6/omega 3 ratio were identified. Functional annotation analyses identified several genes associated with fatty acid metabolism, such as those involved in intra and extra-cellular transport of fatty acid synthesis precursors in intramuscular fat of longissimus thoracis muscle. Some of them must be highlighted, such as: ACSM3 and ACSS1 genes, which work as a precursor in fatty acid synthesis; DGAT2 gene that acts in the deposition of saturated fat in the adipose tissue; GPP and LPL genes that support the synthesis of insulin, stimulating both the glucose synthesis and the amino acids entry into the cells; and the BDH1 gene, which is responsible for the synthesis and degradation of ketone bodies used in the synthesis of ATP. Conclusion: Several genes related to lipid metabolism and fatty acid composition were identified. These findings must contribute to the elucidation of the genetic basis to improve Nellore meat quality traits, with emphasis on human health. Additionally, it can also contribute to improve the knowledge of fatty acid biosynthesis and the selection of animals with better nutritional quality. (AU)

FAPESP's process: 09/16118-5 - Genomic tools to genetic improvement of direct economic important traits in Nelore cattle
Grantee:Lucia Galvão de Albuquerque
Support type: Research Projects - Thematic Grants
FAPESP's process: 12/15098-3 - Study of the gene expression associated to fatty acid profile in Nelore cattle feedlot
Grantee:Bruno Lapo Utembergue
Support type: Scholarships in Brazil - Master