Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

New highly bioactive crystallization-resistant glass for tissue engineering applications

Full text
Author(s):
Souza, M. T. ; Renno, A. C. M. ; Peitl, O. ; Zanotto, E. D.
Total Authors: 4
Document type: Journal article
Source: TRANSLATIONAL MATERIALS RESEARCH; v. 4, n. 1 MAR 2017.
Web of Science Citations: 6
Abstract

Bioactive glasses are able to chemically bond to hard and soft tissues and have been proposed and used for tissue regeneration in several dentistry and medical applications. However, the majority of bioactive glass compositions do not support prolonged or repeated heat treatments, since these procedures often result in uncontrolled crystallization, which usually degrade their mechanical properties and, in most instances, substantially diminish their bioactivity. Therefore, the manufacturing of 3D devices, fibers or scaffolds, which aim to expand the usage of these materials, is a challenging task. To overcome this phenomenon, a new bioactive glass composition was recently developed at the Vitreous Materials Laboratory (LaMaV-UFSCar, Brazil) and licensed to the start-up company VETRA. This new bioactive glass composition shows high stability against crystallization coupled with high bioactivity, which allows the development of bioactive fibers, meshes and other complex 3D shapes. In addition, this bioactive glass has an elevated bioactivity, is bioresorbable and flexible (in fiber form), which makes this glass a potential alternative for soft and hard tissue regeneration. In this article, we discuss this recent development and summarize the latest advances in testing the effectiveness of this new material in in vitro and in vivo tests. To date, the results indicate that this new glass composition presents a larger workability window, which allows the development of numerous medical devices. This feature combined with the high bioactivity of this new glass delivers a promising broad spectrum of applications as a material for tissue engineering. (AU)

FAPESP's process: 11/22937-9 - Development and characterization of highly bioactive flexible vitreous meshes
Grantee:Marina Trevelin Souza
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 13/07793-6 - CEPIV - Center for Teaching, Research and Innovation in Glass
Grantee:Edgar Dutra Zanotto
Support type: Research Grants - Research, Innovation and Dissemination Centers - RIDC