Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Distribution of growth hormone-responsive cells in the mouse brain

Full text
Furigo, Isadora C. ; Metzger, Martin ; Teixeira, Pryscila D. S. ; Soares, Carlos R. J. ; Donato, Jr., Jose
Total Authors: 5
Document type: Journal article
Source: Brain Structure & Function; v. 222, n. 1, p. 341-363, JAN 2017.
Web of Science Citations: 13

Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized. (AU)

FAPESP's process: 13/21722-4 - Mechanism of action of bromocriptine and prolactin antagonists in the treatment of Diabetes and Obesity
Grantee:Isadora Clivatti Furigo
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 12/24345-4 - Evaluation of the potential of prolactin antagonists to the treatment of obesity and Diabetes mellitus 2
Grantee:Carlos Roberto Jorge Soares
Support type: Regular Research Grants
FAPESP's process: 10/18086-0 - Molecular basis of leptin resistance
Grantee:Jose Donato Junior
Support type: Research Grants - Young Investigators Grants
FAPESP's process: 12/02388-3 - Topography and transmitter phenotype of the projections between the lateral habenula, the rostromedial tegmental nucleus and the dorsal raphe nucleus in the rat
Grantee:Martin Andreas Metzger
Support type: Regular Research Grants