Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Lattice-layer entanglement in Bernal-stacked bilayer graphene

Full text
Author(s):
Bittencourt, Victor A. S. V. ; Bernardini, Alex E.
Total Authors: 2
Document type: Journal article
Source: Physical Review B; v. 95, n. 19 MAY 19 2017.
Web of Science Citations: 5
Abstract

The complete lattice-layer entanglement structure of Bernal-stacked bilayer graphene is obtained for the quantum system described by a tight-binding Hamiltonian which includes mass and bias voltage terms. Through a suitable correspondence with the parity-spin SU(2)circle times SU(2) structure of a Dirac Hamiltonian, when it brings up tensor and pseudovector external field interactions, the lattice-layer degrees of freedom can be mapped into such a parity-spin two-qubit basis which supports the interpretation of the bilayer graphene eigenstates as entangled ones in a lattice-layer basis. The Dirac Hamiltonian mapping structure simply provides the tools for the manipulation of the corresponding eigenstates and eigenenergies of the Bernal-stacked graphene quantum system. The quantum correlational content is then quantified by means of quantum concurrence, in order to have the influence of mass and bias voltage terms quantified, and in order to identify the role of the trigonal warping of energy in the intrinsic entanglement. Our results show that while the mass term actively suppresses the intrinsic quantum entanglement of bilayer eigenstates, the bias voltage term spreads the entanglement in the Brillouin zone around the Dirac points. In addition, the interlayer coupling modifies the symmetry of the lattice-layer quantum concurrence around a given Dirac point. It produces some distortion on the quantum entanglement profile which follows the same pattern of the isoenergy line distortion in the Bernal-stacked bilayer graphene. (AU)

FAPESP's process: 15/05903-4 - SU(2) x SU(2) bi-spinor structure entanglement and additional quantum correlations exhibited by Dirac-like systems as graphene and trapped ions
Grantee:Alex Eduardo de Bernardini
Support type: Regular Research Grants