Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Methods and pitfalls of measuring thermal preference and tolerance in lizards

Full text
Camacho, Agustin ; Rusch, Travis W.
Total Authors: 2
Document type: Journal article
Source: Journal of Thermal Biology; v. 68, n. A, p. 63-72, AUG 2017.
Web of Science Citations: 11

Understanding methodological and biological sources of bias during the measurement of thermal parameters is essential for the advancement of thermal biology. For more than a century, studies on lizards have deepened our understanding of thermal ecophysiology, employing multiple methods to measure thermal preferences and tolerances. We reviewed 129 articles concerned with measuring preferred body temperature (PBT), voluntary thermal tolerance, and critical temperatures of lizards to offer: a) an overview of the methods used to measure and report these parameters, b) a summary of the methodological and biological factors affecting thermal preference and tolerance, c) recommendations to avoid identified pitfalls, and d) directions for continued progress in our application and understanding of these thermal parameters. We emphasize the need for more methodological and comparative studies. Lastly, we urge researchers to provide more detailed methodological descriptions and suggest ways to make their raw data more informative to increase the utility of thermal biology studies. (AU)

FAPESP's process: 12/15754-8 - Ecogeographical consequences of evolution of the snake-like morphotype in squamates
Grantee:Agustín Camacho Guerrero
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 13/50297-0 - Dimensions US-BIOTA São Paulo: a multidisciplinary framework for biodiversity prediction in the Brazilian Atlantic forest hotspot
Grantee:Cristina Yumi Miyaki
Support type: BIOTA-FAPESP Program - Thematic Grants
FAPESP's process: 15/01300-3 - Use of voluntary maximum temperatures for linking thermal physiology and species geographic range size
Grantee:Agustín Camacho Guerrero
Support type: Scholarships abroad - Research Internship - Post-doctor