Advanced search
Start date

Hybrid solar cells based on conducting polymers and inorganic nanoparticles

Jilian Nei de Freitas
Total Authors: 1
Document type: Doctoral Thesis
Institution: Universidade Estadual de Campinas. Instituto de Química
Defense date:
Examining board members:
Leni Campos Akcelrud; Roberto Mendonça Faria; Lauro Tatsuo Kubota; Marcelo Ganzarolli de Oliveira
Advisor: Ana Flavia Nogueira

This PhD Thesis investigated the development and characterization of new materials aiming at the application in hybrid solar cells. In Chapter I, a general introduction on the working principles and state-of-the-art of the organic solar cells, properties of the conducting polymers and the inorganic nanoparticles are presented. Chpater II highlights the aims of this work. In Chapter III, new conducting polymers based on the combination of fluorene, thiophene and/or benzene units are investigated. The photophysical and electrochemical characteristics, and charge mobility, are discussed. The polymers were also combined with a soluble fullerene derivative (PCBM) and these composites were used as active layer in bulk-heterojunction solar cells with the following configuration: ITO | PEDOT:PSS | Heterojunction | LiF | Al. Then, CdSe nanoparticles with different sizes were synthesized using a well-established method, and characterized using absorption and emission measurements, cyclic voltammetry (CV), X-ray diffraction (XRD) and transmission electron microscopy (TEM), as presented in Chapter IV. The previously characterized polymers were combined with the CdSe nanoparticles, and the nanocomposites were used to assemble hybrid solar cells. The devices showed very low photocurrent values, which were attributed to a poor electronic transport in the nanoparticles phase. Thus, a new system was suggested, based on a mixture of polymer/CdSe/PCBM. The photocurrent-potential curves and spectral response of the devices assembled with the ternary systems were evaluated, leading to very promising results. The absorption, emission, XRD, CV, TEM and atomic force microscopy measurements of the films were also performed to investigate/elucidate the role of each component in the ternary systems, as discussed in Chapter V. In Chapter VI, new conducting polymers based on poly(fluorenylenevinylene) containing functional units, such as pyridine or push-pull type aromatic units, were synthesized via the Gilch route. The structures of these materials were designed aiming at their application in hybrid solar cells, in combination with the previously synthesized CdSe nanoparticles. The polymers were characterized by magnetic nuclear resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, and thermal, electrochemical and photophysical measurements. These polymers were combined with CdSe and/or PCBM and used as active layer in solar cells. In Chapter VII the addition of the commercial organic dye Disperse Red 1 in the mixture of poly(fluorenylenevinylene)/PCBM to enhance the light absorption in the active layer was investigated. A systematic study using photophysical and electrochemical measurements was performed in order to elucidate the effect of the dye addition, as well as the energy or electron transfer processes in this new ternary system. Finally, Chapter VIII summarizes the main conclusions of this work and highlights some perspectives for this exciting research filed. (AU)