Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

EEG sensorimotor rhythms' variation and functional connectivity measures during motor imagery: linear relations and classification approaches

Full text
Author(s):
Stefano Filho, Carlos A. [1, 2] ; Attux, Romis [2, 3] ; Castellano, Gabriela [1, 2]
Total Authors: 3
Affiliation:
[1] Univ Estadual Campinas, Gleb Wataghing Inst Phys, Neurophys Grp, Campinas, SP - Brazil
[2] Brazilian Inst Neurosci & Neurotechnol, Sao Paulo - Brazil
[3] Univ Estadual Campinas, Sch Elect & Comp Engn, Dept Comp Engn & Ind Automat, Campinas, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: PeerJ; v. 5, NOV 8 2017.
Web of Science Citations: 3
Abstract

Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI); in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that inforniation may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any I near correlation between variations in the synchronization patterns that is, variations in the PSD of mu and beta bands induced by MI and alterations in the corresponding functional networks. Moreover, we (I) explored the feasibility of using functional connectivity parameters as features fora classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations (p < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 +/- 8)% and (87 +/- 7)% for the mu and beta band, respectively, versus (83 +/- 8)% and (83 +/- 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives. (AU)

FAPESP's process: 13/07559-3 - BRAINN - The Brazilian Institute of Neuroscience and Neurotechnology
Grantee:Fernando Cendes
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC