Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Photoprotective potential of metabolites isolated from algae-associated fungi Annulohypoxylon stygium

Full text
Author(s):
Campanini Maciel, Olivia Maria [1] ; Napoleao Tavares, Renata Spagolla [2] ; Engracia Caluz, Daniela Ricardo [1] ; Gaspar, Lorena Rigo [2] ; Debonsi, Hosana Maria [1]
Total Authors: 5
Affiliation:
[1] Univ Sao Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Phys & Chem, Ribeirao Preto - Brazil
[2] Univ Sao Paulo, Sch Pharmaceut Sci Ribeirao Preto, Dept Pharmaceut Sci, Ribeirao Preto - Brazil
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY; v. 178, p. 316-322, JAN 2018.
Web of Science Citations: 9
Abstract

Natural products, or secondary metabolites, obtained from fungal species associated with marine algae have been widely used in sunscreens due to their antioxidant activity and protective potential against solar radiation. The endophytic fungus isolated from Bostrychia radicans algae collected in the Rio Escuro mangrove, Sao Paulo State, Brazil, Annulohypoxylon stygium (Xylariaceae family) was studied to evaluate the photoprotective potential of its metabolites. The Annulohypoxylon genus can produce secondary metabolites with interesting cytotoxic, antibacterial and antioxidant properties and was never isolated before from a marine alga or had its metabolites studied for UV protection. The fungal culture (code As) extracted with dichloromethane: methanol (2:1) yielded 9 fractions (Asa to Asi) which were submitted to different chromatographic methodologies to obtain pure compounds, and to spectroscopic methodologies to elucidate their structures. Also, a screening was conducted to evaluate the qualitative production of the metabolites, besides the absorption in the UVA/UVB range, their photostability and phototoxicity potential using the 3T3 NRU phototoxicity test (OECD TG 432). This study led to the isolation of a novel compound, 3-benzylidene-2-methylhexahydropyrrolo {[}1,2-alpha] pyrazine-1,4-dione (1), from fractions Ase3 and Asf3; Ase1 was identified as 1-(1,3-Benzodioxol-5-yl)-1,2-propanediol (2), two metabolites were isolated as diastereomers (1S,2R)-1-phenyl-1,2-propanediol (3) from Asd2 and (1R,2R)-1-phenyl-1,2-propanediol (4) from Asd3, and Ase1 and 1,3-benzodioxole-5-methanol (5) from Asc1. The results obtained showed a great potential source of new molecules to be used as UVB filters in sunscreens, since substances 1-2 presented UVB absorption, had no phototoxic potential and were considered photostable. In conclusion, these compounds can be considered as a potential new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using in vitro methods for topical use. Meanwhile, further efficacy assays shall be conducted for the establishment of their Sun Protection Factor (SPF). Also, this work provided new information concerning the metabolic profile of A. stygium, since it was possible to obtain two enantiomer compounds (3) and (4). One of them belonged to the same skeleton, but with a methylenedioxy moiety, showing the richest enzymatic pattern for this microorganism. (AU)

FAPESP's process: 10/00086-4 - Evaluation of the photoprotective potential of new marine origin UV-filters: study of the photostability, phototoxicity, allergenic potential and performance
Grantee:Lorena Rigo Gaspar Cordeiro
Support type: Regular Research Grants