Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Diabetogenic effect of pravastatin is associated with insulin resistance and myotoxicity in hypercholesterolemic mice

Full text
Lorza-Gil, Estela [1] ; Garcia-Arevalo, Marta [1] ; Favero, Bianca Cristine [1] ; Gomes-Marcondes, Maria Cristina C. [1] ; Oliveira, Helena C. F. [1]
Total Authors: 5
[1] Univ Estadual Campinas, Biol Inst, Dept Struct & Funct Biol, Rua Monteiro Lobato 255, BR-13083862 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Web of Science Citations: 0

BackgroundHMG-CoA reductase inhibitors (statins) are cholesterol-lowering drugs widely used to treat hypercholesterolemia and prevent cardiovascular disease. Statins are generally well tolerated, but adverse reactions may occur, particularly myopathy and new onset of diabetes. The exact mechanism of statin-induced myopathy and diabetes has not been fully elucidated. We have previously shown that treatment of hypercholesterolemic (LDLr-/-) mice with pravastatin for 2months decreased pancreatic islet insulin secretion and increased oxidative stress and cell death, but no glucose intolerance was observed. The purpose of the current work was to study long-term pravastatin effects on glucose homeostasis, insulin sensitivity, muscle protein turnover and cell viability.MethodsLDLr(-/-) mice were treated with pravastatin for 3, 6 and 10months. Glucose tolerance, insulin resistance and glucose-stimulated insulin secretion were evaluated. The rates of protein synthesis and degradation were determined in gastrocnemius muscle after 10months of treatment. Insulin signalling, oxidative stress and cell death were analysed in vitro using C2C12 myotubes.ResultsAfter 6 and 10months of treatment, these mice became glucose intolerant, and after 10months, they exhibited marked insulin resistance. Reduced islet glucose-stimulated insulin secretion was observed after the 3rdmonth of treatment. Mice treated for 10months showed significantly decreased body weight and increased muscle protein degradation. In addition, muscle chymotrypsin-like proteasomal activity and lysosomal cathepsin were markedly elevated. C2C12 myotubes exposed to increasing concentrations of pravastatin presented dose-dependent impairment of insulin-induced Akt phosphorylation, increased apoptotic markers (Bax protein and cleaved caspase-3) and augmented superoxide anion production.ConclusionsIn addition to reduced insulin secretion, long-term pravastatin treatment induces insulin resistance and muscle wasting. These results suggest that the diabetogenic effect of statins is linked to the appearance of myotoxicity induced by oxidative stress, impaired insulin signalling, proteolysis and apoptosis. (AU)

FAPESP's process: 17/17728-8 - Mitochondrial function and dysfunction: implications for aging and associated diseases
Grantee:Aníbal Eugênio Vercesi
Support type: Research Projects - Thematic Grants