Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Linear and Weakly Nonlinear Energetics of Global Nonhydrostatic Normal Modes

Full text
Author(s):
Raupp, Carlos F. M. [1] ; Teruya, Andre S. W. [1] ; Silva Dias, Pedro L. [1]
Total Authors: 3
Affiliation:
[1] Univ Sao Paulo, Inst Astron Geofis & Ciencias Atmosfer, Sao Paulo, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: JOURNAL OF THE ATMOSPHERIC SCIENCES; v. 76, n. 12, p. 3831-3846, DEC 2019.
Web of Science Citations: 1
Abstract

Here the theory of global nonhydrostatic normal modes has been further developed with the analysis of both linear and weakly nonlinear energetics of inertia-acoustic (IA) and inertia-gravity (IG) modes. These energetics are analyzed in the context of a shallow global nonhydrostatic model governing finite-amplitude perturbations around a resting, hydrostatic, and isothermal background state. For the linear case, the energy as a function of the zonal wavenumber of the IA and IG modes is analyzed, and the nonhydrostatic effect of vertical acceleration on the IG waves is highlighted. For the nonlinear energetics analysis, the reduced equations of a single resonant wave triad interaction are obtained by using a pseudoenergy orthogonality relation. Integration of the triad equations for a resonance involving a short harmonic of an IG wave, a planetary-scale IA mode, and a short IA wave mode shows that an IG mode can allow two IA modes to exchange energy in specific resonant triads. These wave interactions can yield significant modulations in the dynamical fields associated with the physical-space solution with periods varying from a daily time scale to almost a month long. (AU)

FAPESP's process: 12/06388-8 - Energetics of the Normal Modes of the Nonhydrostatic Atmospheric Dynamics
Grantee:André Seiji Wakate Teruya
Support Opportunities: Scholarships in Brazil - Master
FAPESP's process: 09/11643-4 - Multi-scale interactions in the atmosphere
Grantee:Carlos Frederico Mendonça Raupp
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 15/50686-1 - Paleo-constraints on monsoon evolution and dynamics
Grantee:Pedro Leite da Silva Dias
Support Opportunities: Research Projects - Thematic Grants