Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Phylogeny and anatomy of marine mussels (Bivalvia: Mytilidae) reveal convergent evolution of siphon traits

Full text
Audino, Jorge A. [1] ; Serb, Jeanne M. [2] ; Marian, Jose Eduardo A. R. [1]
Total Authors: 3
[1] Univ Sao Paulo, Dept Zool, Rua Matao, Travessa 14, 101, BR-05508090 Sao Paulo, SP - Brazil
[2] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, 2200 Osborn Dr, Ames, IA 50011 - USA
Total Affiliations: 2
Document type: Journal article
Source: ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY; v. 190, n. 2, p. 592-612, OCT 2020.
Web of Science Citations: 1

Convergent morphology is a strong indication of an adaptive trait. Marine mussels (Mytilidae) have long been studied for their ecology and economic importance. However, variation in lifestyle and phenotype also make them suitable models for studies focused on ecomorphological correlation and adaptation. The present study investigates mantle margin diversity and ecological transitions in the Mytilidae to identify macroevolutionary patterns and test for convergent evolution. A fossil-calibrated phylogenetic hypothesis of Mytilidae is inferred based on five genes for 33 species (19 genera). Morphological variation in the mantle margin is examined in 43 preserved species (25 genera) and four focal species are examined for detailed anatomy. Trait evolution is investigated by ancestral state estimation and correlation tests. Our phylogeny recovers two main clades derived from an epifaunal ancestor. Subsequently, different lineages convergently shifted to other lifestyles: semi-infaunal or boring into hard substrate. Such transitions are correlated with the development of long siphons in the posterior mantle region. Two independent origins are reconstructed for the posterior lobules on the inner fold, which are associated with intense mucociliary transport, suggesting an important cleansing role in epifaunal mussels. Our results reveal new examples of convergent morphological evolution associated with lifestyle transitions in marine mussels. (AU)

FAPESP's process: 15/09519-4 - Evolution and functional anatomy of the mantle margin in the Pteriomorphia (Mollusca, Bivalvia)
Grantee:Jorge Alves Audino
Support type: Scholarships in Brazil - Doctorate
FAPESP's process: 17/01365-3 - Comparative phylogenetic methods and mantle margin evolution: implications for morphological and ecological diversification in Pteriomorphia (Mollusca, Bivalvia)
Grantee:Jorge Alves Audino
Support type: Scholarships abroad - Research Internship - Doctorate