Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Hybrid oil-in-water emulsions applying wax(lecithin)-based structured oils: Tailoring interface properties

Full text
Author(s):
Okuro, Paula K. [1] ; Gomes, Andresa [1] ; Cunha, Rosiane L. [1]
Total Authors: 3
Affiliation:
[1] Univ Estadual Campinas, Fac Food Engn FEA, Dept Food Engn DEA, UNICAMP, Rua Monteiro Lobato 80, BR-13083862 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Food Research International; v. 138, n. B DEC 2020.
Web of Science Citations: 0
Abstract

This study addressed the impact of fruit wax(lecithin)-based oleogels as dispersed phase in formation and stability of oil-in-water emulsions. These hybrid emulsions were prepared above the melting point of the oleogels, using Tween 80 (T80) or whey protein isolate (WPI) as emulsifiers. Both mono- and mixed-component oleogels comprised of fruit wax (FW) or FW + lecithin (FWLEC), respectively, were studied as lipid phases. After hot-homogenization, emulsions were submitted to quiescent cooling and stored over 14 days at 5 or 25 degrees C, in such temperatures supposed to assist or hinder oleogelation, respectively. Time course promoted a slight decrease in zeta potential only for WPI-stabilized emulsions and particle size distribution was shifted to larger size values, but showing a lesser extent to those stored at 5 degrees C. The presence of oleogels improved kinetic stability of emulsions compared to liquid oil at both temperatures, disclosing the role of the combined effects of the type of emulsifier and oleogelator(s)-emulsifier interactions. These outcomes are associated with the interfacial activity played by both oleogelators, but mainly lecithin that led to lower values of interfacial tension. In addition FWLEC combined with WPI showed the lowest complex modulus from dilational rheology, which can be related with WPI-LEC complex formation. Overall, results suggest that oleogelators migrated to the O/W interface of dispersed droplets, no longer reflecting oleogel bulk properties and showing a more complex behavior. However, the formation of more complex structures at the interface favored greater stability of the emulsions. Thus, the new perspective of oleogel-inspired fat droplets in hybrid systems can expand the conventional approach of oil structuring to create mixed interfaces tailoring oil-in-water emulsions properties. (AU)

FAPESP's process: 11/06083-0 - Emulsification by microchannels
Grantee:Rosiane Lopes da Cunha
Support type: Regular Research Grants
FAPESP's process: 19/26348-0 - Encapsulation of non-polar bioactive agents in conventional emulsions, Pickering Emulsions, or nanoemulsions: application in active films, and activity conservation and controlled release studies
Grantee:Andresa Gomes Brunassi
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 18/20308-3 - Designing oil structured colloidal systems towards enhanced bioavailability of bioactive compounds on in vitro digestibility behavior
Grantee:Paula Kiyomi Okuro
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 09/54137-1 - Acquisition of a particle size/distribution analyzer, a zeta potential measurement system, a spray dryer, and an ultra-high-pressure liquid chromatograph/mass spectrometer
Grantee:Miriam Dupas Hubinger
Support type: Multi-user Equipment Program