Advanced search
Start date
Betweenand
(Reference retrieved automatically from SciELO through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Active lifestyle enhances protein expression profile in subjects with Lewy body pathology

Full text
Author(s):
Caroline Cristiano Real ; Cláudia Kimie Suemoto ; Karina Henrique Binda ; Lea Tenenholz Grinberg ; Carlos Augusto Pasqualucci ; Wilson Jacob Filho ; Renata Eloah de Lucena Ferretti-Rebustini ; Ricardo Nitrini ; Renata Elaine Paraizo Leite ; Luiz Roberto de Britto
Total Authors: 10
Document type: Journal article
Source: Dement. Neuropsychol.; v. 15, n. 1, p. 41-50, Mar. 2021.
Abstract

ABSTRACT. Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were not evaluated in postmortem brain tissue. Objective: We aimed to evaluate, by immunohistochemistry, astrocytes, tyrosine hydroxylase (TH) and structural proteins expression (neurofilaments and microtubules — MAP2) changes in postmortem brain samples of individuals with Lewy body pathology. Methods: Braak PD stage≥III samples, classified by neuropathology analysis, from The Biobank for Aging Studies were classified into active (n=12) and non-active (n=12) groups, according to physical activity lifestyle, and paired by age, sex and Braak staging. Substantia nigra and basal ganglia were evaluated. Results: Groups were not different in terms of age or gender and had similar PD neuropathological burden (p=1.00). We observed higher TH expression in the active group in the substantia nigra and the basal ganglia (p=0.04). Astrocytes was greater in the non-active subjects in the midbrain (p=0.03) and basal ganglia (p=0.0004). MAP2 levels were higher for non-active participants in the basal ganglia (p=0.003) and similar between groups in the substantia nigra (p=0.46). Neurofilament levels for non-active participants were higher in the substantia nigra (p=0.006) but not in the basal ganglia (p=0.24). Conclusion: Active lifestyle seems to promote positive effects on brain by maintaining dopamine synthesis and structural protein expression in the nigrostriatal system and decrease astrogliosis in subjects with the same PD neuropathology burden. (AU)

FAPESP's process: 13/25049-2 - CORRELATION OF CELLULAR, MOLECULAR, BEHAVIORAL AND NEUROFUNCTIONAL PARAMETERS IN PARKINSON'S DISEASE WITH PHYSICAL EXERCISE IN AN ANIMAL MODEL AND IN HUMAN POSTMORTEM TISSUE.
Grantee:Caroline Cristiano Real Gregório
Support type: Scholarships in Brazil - Post-Doctorate
FAPESP's process: 16/16166-3 - Physical exercise plasticity on motor cortex and motor behaviour in early phase Parkinson's Disease animal model
Grantee:Karina Henrique Binda
Support type: Scholarships in Brazil - Scientific Initiation