Myristoylation and its effects on the human Golgi ... - BV FAPESP
Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Myristoylation and its effects on the human Golgi Reassembly and Stacking Protein 55

Full text
Author(s):
Kava, Emanuel [1] ; Mendes, Luis F. S. [1] ; Batista, Mariana R. B. [1, 2] ; Costa-Filho, Antonio J. [1]
Total Authors: 4
Affiliation:
[1] Univ Sao Paulo, Ribeirao Preto Sch Philosophy Sci & Literature, Phys Dept, Mol Biophys Lab, Ribeirao Preto - Brazil
[2] Univ Warwick, Sch Life Sci, Gibbet Hill Campus, Coventry CV4 7AL, W Midlands - England
Total Affiliations: 2
Document type: Journal article
Source: Biophysical Chemistry; v. 279, DEC 2021.
Web of Science Citations: 0
Abstract

GRASP55 is a myristoylated protein localized in the medial/trans-Golgi faces and involved in the Golgi structure maintenance and the regulation of unconventional secretion pathways. It is believed that GRASP55 achieves its main functionalities in the Golgi organization by acting as a tethering factor. When bound to the lipid bilayer, its orientation relative to the membrane surface is restricted to determine its proper trans-oligomerization. Despite the paramount role of myristoylation in GRASP function, the impact of such protein modification on the membrane-anchoring properties and the structural organization of GRASP remains elusive. Here, an optimized protocol for the myristoylation in E. coli of the membrane-anchoring domain of GRASP55 is presented. The biophysical properties of the myristoylated/non-myristoylated GRASP55 GRASP domain were characterized in a membrane-mimicking micellar environment. Although myristoylation did not cause any impact on the protein's secondary structure, according to our circular dichroism data, it had a significant impact on the protein's thermal stability and solubility. Electrophoresis of negatively charged liposomes incubated with the two GRASP55 constructions showed different electrophoretic mobility for the myristoylated anchored protein only, thus demonstrating that myristoylation is essential for the biological membrane anchoring. Molecular dynamics simulations were used to further explore the anchoring process in determining the restricted orientation of GRASPs in the membrane. (AU)

FAPESP's process: 15/50366-7 - Resolving mechanistic details of peptide transport across membranes using crystallographic and non-crystallographic structural biology approaches
Grantee:Antonio José da Costa Filho
Support Opportunities: Regular Research Grants
FAPESP's process: 16/16328-3 - Molecular dynamics simulations of proton dependent oligopeptide transporters
Grantee:Mariana Raquel Bunoro Batista
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 17/24669-8 - Unraveling the molecular bases of the early protein secretory pathway in humans using biophysical techniques
Grantee:Luis Felipe Santos Mendes
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 12/20367-3 - Structural and functional studies of the Golgi Re-Assembly and Stacking Protein (GRASP) from Cryptococcus neoformans
Grantee:Antonio José da Costa Filho
Support Opportunities: Regular Research Grants