Advanced search
Start date

Fungal bioluminescence: ecological role, purification and cloning of enzymes

Full text
Hans Eugene Waldenmaier
Total Authors: 1
Document type: Doctoral Thesis
Press: São Paulo.
Institution: Universidade de São Paulo (USP). Conjunto das Químicas (IQ e FCF) (CQ/DBDCQ)
Defense date:
Examining board members:
Cassius Vinicius Stevani; Carlos Takeshi Hotta; Silvio Shigueo Nihei; Patrícia Sartorelli
Advisor: Cassius Vinicius Stevani; Carla Columbano de Oliveira

This PhD thesis describes the studies performed to elucidate the molecular biology of fungal bioluminescence and the ecological significance of the trait in the wild. The recent discovery that the fungal luciferin is 3-hydroxyhispidin has allowed for the characterization of phenylalanine secondary metabolism in the newly sequenced genomes and mycelium transcriptomes of luminescent Panellus stipticus and Neonothopanus gardneri, additionally the genomes and transcriptomes of a non-luminescent variety of P. stipticus and Lentinula edodes served as respective controls. In general the genes involved in phenylalanine secondary metabolism had greater or equal expression in luminescent samples than non luminescent. A cluster of genes related to the secondary metabolism of phenylalanine was found in both luminescent and non luminescent P. stipticus genomes. Transcript abundance of genes in this cluster was similar in both luminescent and non-luminescent Panellus stipticus, but the type I polyketide synthase in non luminescent Panellus stipticus was significantly down regulated. A similar gene cluster in the N. gardneri and L. edodes genomes was absent with corresponding homologues scattered at different genomic loci. Cell free fungal extracts can be combined in vitro with the addition of 3-hydroxyhispidin to produce abundant green light. Preparation of proteinaceous luciferase extracts was improved and partially purified luciferase samples were investigated by mass spectrometry. The presence of luciferase in the separation gel was also evidenced by using luciferin and luciferin-like molecules from plant extracts. The ecological niche surrounding bioluminescent mushrooms was investigated through two main means, glue traps with acrylic mushroom facsimiles that were internally illuminated with green LED lights and direct observation of bioluminescent mushrooms with infrared time lapse photography. Ecological studies were performed in the Atlantic rainforest (Mata Atlântica) and transitional Coconut Palm forest (Mata dos Cocais) biomes of Brazil. Cockroaches, spiders, earwigs, crickets, and luminescent click beetles were the most common animal interacting with mushrooms. All of these animals may be acting as fungal propagule dispersers and in some cases defense of the mushroom. (AU)

FAPESP's process: 11/10507-0 - Fungal bioluminescence: ecological role, purification and cloning of enzymes
Grantee:Hans Eugene Waldenmaier
Support type: Scholarships in Brazil - Doctorate (Direct)