Synthesis and evaluation of hollow porous molecula... - BV FAPESP
Advanced search
Start date
Betweenand


Synthesis and evaluation of hollow porous molecularly imprinted polymer for selective determination of tetracycline

Full text
Author(s):
Pupin, Rafael Rovatti ; Taboada Sotomayor, Maria Del Pilar
Total Authors: 2
Document type: Journal article
Source: Journal of Materials Science; v. 57, n. 36, p. 13-pg., 2022-09-17.
Abstract

A novel hollow porous molecularly imprinted polymer (HMIP) was synthesized for tetracycline determination in different matrices and the adsorption efficiency of this material was compared with the widely applied traditional (unmodified) and core-shell MIP structures. For this purpose, three different tetracycline imprinted polymers were obtained: with the reagent conditions optimized from traditional MIP, a core-shell MIP was obtained by surface polymerization of SiO2 nanoparticles (SiO2MIP). Subsequently, the silica core was removed, obtaining the hollow porous MIP. All materials were characterized by different techniques and HMIP presented higher surface area (227 m(2) g(-1)) and pore volume (0.2 cm(3) g(-1)) when compared with MIP (82.3 m(2) g(-1) and 0.09 cm(3) g(-1)) or SiO2@MIP (109 m(2) g(-1) and 0.1 cm(3) g(-1)) and the respective Non-Imprinted Polymers (NIPs). After optimizing the analysis conditions each polymer structure exhibited different kinetics and equilibrium adsorption behavior, which was related to greater or lesser porosity. HMIP presented superior results for the identification of tetracycline in adsorption experiments (maximum binding capacity of 5.6 mg g(-1) and 0.2 L mg(-1) affinity constant) and in selectivity tests. Water, synthetic urine and milk samples fortified with tetracycline were evaluated and HMIP showed recovery in the range of 74-96%. [GRAPHICS] . (AU)

FAPESP's process: 14/50945-4 - INCT 2014: National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies
Grantee:Maria Valnice Boldrin
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/00677-7 - RADes-MIP - preparation and synthesis of materials for development of rapid analysis devices for monitoring emerging pollutants using highly selective biomimetic polymers based on molecular printing technology
Grantee:Maria Del Pilar Taboada Sotomayor
Support Opportunities: Regular Research Grants
FAPESP's process: 17/20789-9 - Synthesis and application of Molecularly Imprinted Polymers (MIP) in the construction of rapid analysis devices based in lateral flow type for the detection of environmental contaminants
Grantee:Rafael Rovatti Pupin
Support Opportunities: Scholarships in Brazil - Doctorate