Wear Behavior of Ti-xNb Biomedical Alloys by Ball ... - BV FAPESP
Advanced search
Start date
Betweenand
(Reference retrieved automatically from SciELO through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Wear Behavior of Ti-xNb Biomedical Alloys by Ball Cratering

Full text
Author(s):
Felype N. de Mattos [1] ; Pedro A. B. Kuroda [2] ; Mariana C. Rossi [3] ; Conrado R. M. Afonso [4]
Total Authors: 4
Affiliation:
[1] Universidade Federal de São Carlos - Brasil
[2] Universidade Federal de São Carlos. Departamento de Engenharia de Materiais - Brasil
[3] Universidade Federal de São Carlos. Departamento de Engenharia de Materiais - Brasil
[4] Universidade Federal de São Carlos. Departamento de Engenharia de Materiais - Brasil
Total Affiliations: 4
Document type: Journal article
Source: MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS; v. 27, 2024-02-26.
Abstract

Ti alloys have been developing through the years, aiming the biomedical application since it has suitable properties. Among Ti alloys, the Ti-Nb systems are a pronounced group to biomedical applications due to its low elastic modulus, good corrosion resistance, and mechanical properties. Although this system is quite well-known regarding its phases, structure and properties, there is not plenty of information about wear available in the literature. To investigate the wear resistance, the samples were submitted to x-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the phases formed. Hardness and elastic modulus were measured by microhardness Vickers and dynamic Young modulus by excitation impulse. Additionally, wear volume, wear resistance, and H/E ratio were calculated to understand the wear material’s performance. This study aims to investigate the wear resistance of Ti-xNb (x = 15, 25 and 40wt.%), one of each type of Ti alloys and phases formed: Ti-15Nb (α´), Ti-25Nb (α”) and Ti-40Nb (β) and the influence of cooling rate after solution heat treatment on wear properties through ball cratering. It was possible to find that the harder the alloy, the higher the wear resistance. Thus, in the case of Ti-xNb (x = 15, 25 and 40wt.%), alloys the hardness plays a significant role in wear resistance. Besides that, the samples that have presented the α´ or α”phase have the lowest wear resistance. Therefore, not only the hardness influences the wear resistance but also the combination of phases formed. (AU)

FAPESP's process: 18/18293-8 - Titanium alloys: phase transformations and additive manufacturing applied to obtaining functionally graded materials
Grantee:Rubens Caram Junior
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 21/03865-9 - Influence of surface modifications on bioactivity and (tribo) corrosion of beta Ti-Nb-(Zr) alloys with low elastic modulus for application as implant
Grantee:Mariana Correa Rossi
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 19/26517-6 - Influence of the microstructure and phases on surface functionalization of beta Ti-25Ta-xZr- alloys system
Grantee:Pedro Akira Bazaglia Kuroda
Support Opportunities: Scholarships in Brazil - Post-Doctoral