Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Ultrastructural characterization of CD133(+) stem cells bound to superparamagnetic nanoparticles: possible biotechnological applications

Full text
Pavon, L. F. [1] ; Gamarra, L. F. [1] ; Marti, L. C. [1, 2] ; Amaro Junior, E. [1, 3] ; Moreira-Filho, C. A. [4, 1] ; Camargo-Mathias, M. I. [5] ; Okamoto, O. K. [6]
Total Authors: 7
[1] Albert Einstein Res & Educ Inst IEPAE, Sao Paulo - Brazil
[2] Univ Sao Paulo, Biotechnol Program, IPT, Butanan Inst, Sao Paulo - Brazil
[3] Univ Sao Paulo, Dept Radiol, Sao Paulo - Brazil
[4] Univ Sao Paulo, Dept Immunol, Inst Biomed Sci, Sao Paulo - Brazil
[5] UNESP, Biosci Inst, Dept Biol, Rio Claro, SP - Brazil
[6] Univ Fed Sao Paulo, Dept Neurol & Neurosurg, Sao Paulo - Brazil
Total Affiliations: 6
Document type: Journal article
Source: JOURNAL OF MICROSCOPY; v. 231, n. 3, p. 374-383, SEP 2008.
Web of Science Citations: 10

CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas. (AU)