Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

The TAL Effector PthA4 Interacts with Nuclear Factors Involved in RNA-Dependent Processes Including a HMG Protein That Selectively Binds Poly(U) RNA

Full text
Author(s):
de Souza, Tiago Antonio [1] ; Soprano, Adriana Santos [1] ; Vieira de Lira, Nayara Patricia [1] ; Christino Quaresma, Alexandre Jose [1] ; Pauletti, Bianca Alves [1] ; Paes Leme, Adriana Franco [1] ; Benedetti, Celso Eduardo [1]
Total Authors: 7
Affiliation:
[1] CNPEM, Lab Nacl Biociencias LNBio, Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: PLoS One; v. 7, n. 2 FEB 22 2012.
Web of Science Citations: 19
Abstract

Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control. (AU)

FAPESP's process: 10/00634-1 - Plant-pathogen interaction studies on the Xanthomonas citri - Citrus sinensis pathosystem
Grantee:Celso Eduardo Benedetti
Support type: Regular Research Grants