Full text  
Author(s): 
Total Authors: 3

Affiliation:  ^{[1]} Univ Fed ABC, Ctr Matemat Computacao & Cognicao, Santo Andre, SP  Brazil
^{[2]} Univ Sao Paulo, Inst Fis, BR05315 Sao Paulo  Brazil
Total Affiliations: 2

Document type:  Journal article 
Source:  Journal of Mathematical Physics; v. 53, n. 2 FEB 2012. 
Web of Science Citations:  2 
Abstract  
The method of steepest descent is used to study the integral kernel of a family of normal random matrix ensembles with eigenvalue distribution PN (z(1), ... , z(N)) = Z(N)(1)e(N)Sigma(N)(i=1) Valpha(z(i)) Pi(1 <= i<j <= N) vertical bar z(i)  z(j)vertical bar(2), where Valpha(z) = vertical bar z vertical bar(alpha), z epsilon C and alpha epsilon inverted left perpendicular0, infinity inverted right perpendicular. Asymptotic formulas with error estimate on sectors are obtained. A corollary of these expansions is a scaling limit for the npoint function in terms of the integral kernel for the classical SegalBargmann space. (C) 2012 American Institute of Physics. {[}http://dx.doi.org/10.1063/1.3688293] (AU) 