Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Geometrical and kinematic properties of interfacial waves in stratified oil-water flow in inclined pipe

Full text
Author(s):
de Castro, Marcelo S. [1] ; Pereira, Cleber C. [1] ; dos Santos, Jorge N. [1] ; Rodriguez, Oscar M. H. [1]
Total Authors: 4
Affiliation:
[1] USP, Engn Sch Sao Carlos, Dept Mech Engn, BR-13566970 Sao Carlos, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: EXPERIMENTAL THERMAL AND FLUID SCIENCE; v. 37, p. 171-178, FEB 2012.
Web of Science Citations: 25
Abstract

The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved. (AU)

FAPESP's process: 10/03254-5 - Spatial analisys of a perturbation wave in parallel two-phase flow
Grantee:Marcelo Souza de Castro
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)
FAPESP's process: 08/06922-9 - Spatial analisys of a perturbation wave in parallel two-phase flow.
Grantee:Marcelo Souza de Castro
Support Opportunities: Scholarships in Brazil - Master