Amphiphilic copolymers of sucrose methacrylate and... - BV FAPESP
Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Amphiphilic copolymers of sucrose methacrylate and acrylic monomers: Bio-based materials from renewable resource

Full text
Author(s):
de Oliveira, Heitor F. N. [1] ; Felisberti, Maria Isabel [1]
Total Authors: 2
Affiliation:
[1] Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: Carbohydrate Polymers; v. 94, n. 1, p. 317-322, APR 15 2013.
Web of Science Citations: 10
Abstract

Regioselective sucrose 1'-O-methacrylate obtained by transesterification catalyzed by Proteinase-N was copolymerized with hydrophilic N-isopropylacrylamide and hydrophobic methyl methacrylate in different molar ratios by free radical polymerization. The copolymers were characterized by C-13 nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry. Solubility and phase behavior of aqueous solutions were also investigated. The glass transition of the copolymers presents a positive deviation from the values of the homopolymers due to the high density of inter and intramolecular hydrogen bonding. Their solubility is strongly dependent on the composition. Copolymers poor in methyl methacrylate are water soluble, while copolymers richer in methyl methacrylate behaves as hydrogel. These hydrogels are not chemically crosslinked and their form can be design prior swelling by the conventional processing methods, such as solvent casting and extrusion for instance. Copolymers of N-isopropylacrylamide are water soluble and their aqueous solutions present a lower critical solution temperature behavior forming thermoreversible hydrogels. (C) 2013 Elsevier Ltd. All rights reserved. (AU)

FAPESP's process: 10/17804-7 - Polymeric composites
Grantee:Maria Isabel Felisberti
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 10/02098-0 - Multicomponent polymeric materials
Grantee:Maria Isabel Felisberti
Support Opportunities: Regular Research Grants