Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Electronic conductivity of vanadium-tellurite glass-ceramics

Full text
Kjeldsen, Jonas [1] ; Yue, Yuanzheng [1] ; Bragatto, Caio B. [2] ; Rodrigues, Ana C. M. [2]
Total Authors: 4
[1] Aalborg Univ, Sect Chem, DK-9000 Aalborg - Denmark
[2] Univ Fed Sao Carlos, Dept Mat Engn, BR-13565905 Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Journal of Non-Crystalline Solids; v. 378, p. 196-200, OCT 15 2013.
Web of Science Citations: 13

In this paper, we investigate the electronic conductivity of 2TeO(2)-V2O5 glass-ceramics with crystallinity ranging from 0 to 100 wt.%, i.e., from entirely amorphous to completely crystalline. The glass is prepared by the melt quenching technique, and the crystal is prepared by subsequent heat treatment thereof. Glass-ceramics are prepared by mixing glass and crystal powder, followed by a sintering procedure. Activation energies for electronic conduction in the glass and in the crystal are determined by fitting the Mott-Austin equation to the electronic conductivity data obtained by impedance spectroscopy. We find similar activation energies for both glass and crystal, implying that they have similar conduction mechanisms, i.e., thermally activated hopping. The electronic conductivity of 2TeO(2)-V2O5 glass is about one order of magnitude higher than that of the corresponding crystal, and a percolation phenomenon occurs at a glass fraction of 61 wt.%, increasing from a lower conductivity in the crystal to a higher conductivity in the glass. We explain the behavior of electronic conduction in the 2TeO(2)-V2O5 glass-ceramics by considering constriction effects between particles as well as percolation theory. This work implies that, based on its electronic conductivity, vitreous 2TeO(2)-V2O5 is more suitable as a cathode material in secondary batteries compared to a 2TeO(2)-V2O5 glass-ceramic. (C) 2013 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 07/08179-9 - Kinetic processes in glasses and glass ceramics
Grantee:Edgar Dutra Zanotto
Support type: Research Projects - Thematic Grants