Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Haemophilus influenzae porine ompP2 gene transfer mediated by graphene oxide nanoparticles with effects on transformation process and virulence bacterial capacity

Full text
Varela, Julia Nogueira [1] ; Kraehenbuehl Amstalden, Maria Cecilia [1] ; Carneiro Pereira, Rafaella Fabiana [1] ; de Hollanda, Luciana Maria [1] ; Ceragioli, Helder Jose [2] ; Baranauskas, Vitor [2] ; Lancellotti, Marcelo [1]
Total Authors: 7
[1] Univ Campinas UNICAMP, Inst Biol, Dept Biochem, LABIOTEC Biotechnol Lab, BR-13083970 Campinas, SP - Brazil
[2] Univ Campinas UNICAMP, Inst Biol, Dept Semicond Instruments & Photon, NanoEng NanoEngn & Diamond Lab, Sch Elect & Comp E, BR-13083852 Campinas, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Web of Science Citations: 10

Background: H. influenzae is a natural competent bacterium that can uptake DNA from the environment and recombine into bacterial genome. The outbreaks of Brazilian purpuric fever, heavily polluted areas of a different H. influenzae biogroup - aegyptius - as well as gene transference between Neisseria meningitis make the transformation process an important evolutionary factor. This work studied the horizontal transference of the ompP2 gene from a multiresistant strain of H. influenzae 07 (NTHi), under the influence of graphene oxide nanoparticles in order to mimic an atmosphere rich in suspended particles and this way verify if the CFU transformants number was increased. Material and methods: In this article the gene ompP2 was transformed into different strains of H. influenzae mediated or not by graphene oxide nanoparticles in suspension, followed by the adhesion tests in Hec-1B (human endometrium adenocarcinoma) and A549 (pulmonary epithelial carcinoma) cells lines. The transformation frequency and the adhesion capacity were determined in all the mutants to which the ompP2 gene was transferred and compared to their wild type strains. Results: The nanoparticles increased the transformation ratio of one particular strain isolated from a pneumonia case. The adhesion patterns to A549 and Hec1b cell lines of these mutated bacteria has their capacity increased when compared to the wild type. Conclusions: Graphene oxide nanoparticles aid the transformation process, helping to increase the number of CFUs, and the mutants generated with the ompP2 gene from a H. influenzae resistant strain not only present a chloramphenicol resistance but also have an increased adherence patterns in A549 and Hec1B cell lines. (AU)

FAPESP's process: 12/15046-3 - Study of the genome and metabolome of the Haemophilus influenzae strains causing the Brazilian purpuric fever
Grantee:Marcelo Lancellotti
Support type: Regular Research Grants
FAPESP's process: 11/21685-6 - Mechanisms of antibiotic resistance aquisition by bacteria causing infection of human urinary tract: a farmacogenomic and biopharmaceutic design
Grantee:Marcelo Lancellotti
Support type: Regular Research Grants
FAPESP's process: 11/14079-2 - Use of nanoparticles in vaccines against bacterial meningitis
Grantee:Marcelo Lancellotti
Support type: Regular Research Grants