Busca avançada
Ano de início
Entree

Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais

Processo: 17/25908-6
Linha de fomento:Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE
Vigência: 01 de fevereiro de 2019 - 31 de janeiro de 2023
Área do conhecimento:Ciências Exatas e da Terra - Ciência da Computação
Convênio/Acordo: Microsoft Research
Pesquisador responsável:Daniel Carlos Guimarães Pedronette
Beneficiário:Daniel Carlos Guimarães Pedronette
Instituição-sede: Instituto de Geociências e Ciências Exatas (IGCE). Universidade Estadual Paulista (UNESP). Campus de Rio Claro. Rio Claro, SP, Brasil
Empresa: Microsoft Informática Ltda
Pesquisadores principais:Fabio Augusto Faria ; João Paulo Papa ; Jurandy Gomes de Almeida Junior
Pesq. associados:João Paulo Papa
Bolsa(s) vinculada(s):19/04754-6 - Aprendizado fracamente supervisionado baseado em métricas de Ranqueamentto, BP.MS
Assunto(s):Modelos de aprendizagem  Aprendizado computacional  Aprendizado de máquina não supervisionado 

Resumo

Várias técnicas de aprendizagem de máquina baseiam-se em grandes conjuntos de dados rotulados para construir modelos preditivos em tarefas de aprendizado supervisionado. O uso de técnicas de aprendizado profundo pode ser destacado, já que tem sido amplamente utilizado com sucesso em vários domínios. Por outro lado, em muitas circunstâncias, os conjuntos rotulados não estão disponíveis ou são insuficientes para treinar modelos supervisionados efetivos. Tais cenários foram abordados principalmente por técnicas de aprendizagem não supervisionado, que consideram os dados não rotulados para descoberta de padrões em sua estrutura. No entanto, o uso de métodos completamente não supervisionados continua sendo um desafio de pesquisa em muitos cenários e situações. Uma solução promissora baseia-se no uso de abordagens fracamente supervisionadas, capazes de realizar tarefas de aprendizado com base em conjuntos rotulados incompletos ou inexatos. Neste projeto, pretendemos investigar a análise, recuperação e classificação de vídeos no domínio comprimido utilizando pequenos conjuntos de treinamento. O objetivo principal do projeto consiste em investigar e propor métodos capazes de analisar sequências de vídeo comprimido e gerar alertas de acordo com as aplicações consideradas. Tais abordagens podem ser úteis e relevantes em vários domínios, desde ambientes de vigilância, aplicações médicas e industriais, incluindo também casas inteligentes. O desafio de pesquisa fundamental consiste em fazer uso de diferentes técnicas para analisar, representar e classificar vídeos usando dados rotulados restritos. A abordagem proposta visa explorar o máximo de informação disponível, de forma a tornar a abordagem adequada para operar com pequenos conjuntos de dados de treinamento. Pretendemos explorar: (i) representações de aprendizado profundo; (ii) medidas contextuais não supervisionadas e; (iii) técnicas de fusão, para ampliar os conjuntos rotulados iniciais. O primeiro desafio a ser abordado é analisar e representar vídeos no domínio comprimido usando técnicas de aprendizado profundo. Com base nessas representações, pretendemos investigar estratégias para expandir os conjuntos de treinamento usando medidas contextuais não supervisionadas. Dado os conjuntos rotulados obtidos, as estratégias de fusão serão usadas para combinar diversos métodos de classificação e alertas desencadeantes. Embora os métodos que serão investigados possam ser usados em vários domínios, pretendemos selecionar domínios para validar as abordagens propostas. A seleção será realizada considerando a existência de conjuntos de dados públicos disponíveis para realizar avaliações experimentais. (AU)

Publicações científicas
(Referências obtidas automaticamente do Web of Science e do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores)
GUIMARAES PEDRONETTE, DANIEL CARLOS; WENG, YING; BALDASSIN, ALEXANDRO; HOU, CHAOHUAN. Semi-supervised and active learning through Manifold Reciprocal kNN Graph for image retrieval. Neurocomputing, v. 340, p. 19-31, MAY 7 2019. Citações Web of Science: 0.
VALEM, LUCAS PASCOTTI; DE OLIVEIRA, CARLOS RENAN; GUIMARAES PEDRONETTE, DANIEL CARLOS; ALMEIDA, JURANDY. Unsupervised Similarity Learning through Rank Correlation and kNN Sets. ACM Transactions on Multimedia Computing Communications and Applications, v. 14, n. 4 NOV 2018. Citações Web of Science: 0.

Por favor, reporte erros na lista de publicações científicas escrevendo para: cdi@fapesp.br.
Mapa da distribuição dos acessos desta página
Para ver o sumário de acessos desta página, clique aqui.