Busca avançada
Ano de início
Entree

Novas fronteiras na Teoria de Singularidades

Processo: 19/21181-0
Linha de fomento:Auxílio à Pesquisa - Temático
Vigência: 01 de março de 2020 - 28 de fevereiro de 2025
Área do conhecimento:Ciências Exatas e da Terra - Matemática - Geometria e Topologia
Pesquisador responsável:Marcelo José Saia
Beneficiário:Marcelo José Saia
Instituição-sede: Instituto de Ciências Matemáticas e de Computação (ICMC). Universidade de São Paulo (USP). São Carlos , SP, Brasil
Pesquisadores principais:Maria Aparecida Soares Ruas ; Míriam Garcia Manoel ; Nivaldo de Góes Grulha Júnior ; Raimundo Nonato Araújo dos Santos ; Regilene Delazari dos Santos Oliveira
Pesq. associados:Alex Carlucci Rezende ; Eliris Cristina Rizziolli ; Grazielle Feliciani Barbosa ; João Carlos Ferreira Costa ; Josnei Antonio Novacoski ; Michelle Ferreira Zanchetta Morgado ; Nguyen Thi Bich Thuy ; Roberta Godoi Wik Atique ; Thais Maria Dalbelo ; Victor Hugo Jorge Pérez
Assunto(s):Teoria das singularidades  Teoria das catástrofes  Classificação  Geometria  Topologia  Anéis e álgebras comutativos  Geometria algébrica  Singularidades  Sistemas dinâmicos  Sistemas discretos 

Resumo

A teoria de singularidades possui aplicações nas mais diferentes áreas das ciências, tais como a ótica, robótica e visão computacional, e interage com diversas áreas da matemática, a geometria e topologia algébricas, álgebra comutativa, geometria diferencial e afim, teoria qualitativa de equações diferenciais e teoria de bifurcações. Por outro lado, estas áreas enriquecem esta teoria com problemas e resultados interessantes e de relevância. Este projeto tem por objetivo o desenvolvimento de temas fundamentais da teoria de singularidades e acreditamos que estaremos colaborando com o avanço nas fronteiras do conhecimento dentro desta linha de pesquisa. Merecem destaque temas como classificação, topologia e geometria das singularidades de aplicações reais e complexas, bem como a determinação de equisingularidade em famílias. Os invariantes são investigados em suas mais diversas formas, geométricas, algébricas ou topológicas. A geometria bi-Lipschitz e as singularidades de matrizes e variedades determinantes são ponto central nesta investigação, com temas que motivam novas linhas de pesquisa nesta área. Ressaltamos também o desenvolvimento de pesquisas relacionando multiplicidades com a teoria de cohomologia local de anéis e módulos. Métodos computacionais serão aplicados, tanto para o entendimento dos invariantes e da topologia de singularidades, quanto no desenvolvimento de algoritmos para o estudo de multiplicidades. Este projeto tem quatro linhas de pesquisa articuladas entre si possibilitando a interação dos diversos pesquisadores envolvidos no projeto e o cumprimento dos objetivos propostos. As linhas de pesquisa são: Classificação, equisingularidade e invariantes; geometria e topologia; álgebra comutativa, geometria algébrica e singularidades; aplicações a aspectos qualitativos de sistemas dinâmicos contínuos e discretos. O projeto conta com pesquisadores com experiência extensiva nas áreas de pesquisa em pauta e que já produziu avanços fundamentais na teoria e nas suas aplicações. Ressaltamos também a excelente capacidade dos jovens pesquisadores do grupo com uma contribuição significativa no avanço da ciência em Singularidades. Outro objetivo é fortalecer a colaboração com pesquisadores de outros estados, tais como Maranhão, Ceará, Paraíba, Piauí, Minas Gerais, Espírito Santo, Paraná, Rondônia e também de outros países, tais como Alemanha, Espanha, Estados Unidos, França, Japão, Inglaterra, Irã, México, Polônia e Portugal. (AU)